

Flexible Methodology for Image Segmentation

Raymond H. Chan Department of Mathematics Chinese University of Hong Kong

Aim: One Framework to Segment Different Images

MRA image

Gamma noise

 $\begin{array}{c} {\rm color\ image} \\ {\rm motion} + {\rm Gaussian} \end{array}$

Poisson noise

60% pixel loss + Gaussian 2

Hyper-spectral Image and Point Cloud Classification

Outline

- 1. Mumford-Shah Model
- 2. Two-stage Image Segmentation Method
- 3. Three-stage Color Segmentation Model
- 4. Convex/Nonconvex Model
- 5. Hyperspectral Image and Point Cloud Classification

Segmentation: Problem Setting and Notation

Given a corrupted image f,

Mumford-Shah Model (1989) [cited 5,700+ time]

Highly non-convex problem

Simplifying Mumford-Shah Model

2-phase Chan-Vese Model (2001) [cited 10,200+ times]

$$E_{\rm CV}(\Gamma, c^i, c^e) = \frac{\lambda}{2} \int_{\Omega^i} (\mathbf{f} - c^i)^2 + \frac{\lambda}{2} \int_{\Omega^e} (\mathbf{f} - c^e)^2 + \text{Length}(\Gamma)$$

Minimize by Alternating Direction Method:

Step 1: Given Γ , minimize c^i and c^e .

- 1. c^i = average of f in Ω^i
- 2. c^e = average of f in Ω^e

Step 2: Given c^i and c^e , find Γ .

Express Γ as zero-contour of a level set function ϕ and minimize w.r.t. ϕ .

How to Solve the Level-set Function?

Minimizing ϕ in:

$$\frac{\lambda}{2} \int_{\Omega} (\mathbf{f} - c^{i})^{2} H(\boldsymbol{\phi}) + \frac{\lambda}{2} \int_{\Omega} (\mathbf{f} - c^{e})^{2} (1 - H(\boldsymbol{\phi})) + \int_{\Omega} \delta(\boldsymbol{\phi}) |\nabla(\boldsymbol{\phi})|$$

where $H(\cdot)$ is the Heaviside function, and $\delta = H'$.

Euler-Lagrange equation for ϕ :

$$\delta(\phi) \left[\operatorname{div} \left(\frac{\nabla \phi}{|\nabla \phi|} \right) + \lambda (\mathbf{f} - c^i)^2 - \lambda (\mathbf{f} - c^e)^2 \right] = 0.$$

Change to parabolic and solve by time-marching:

$$\frac{\partial \phi}{\partial t} = \delta(\phi) \left[\operatorname{div} \left(\frac{\nabla \phi}{|\nabla \phi|} \right) + \lambda (\mathbf{f} - c^i)^2 - \lambda (\mathbf{f} - c^e)^2 \right]$$

Convexified Chan-Vese Model

Smooth delta function
$$\delta(\cdot)$$
 by $\delta_{\epsilon}(\cdot)$:

$$\frac{\partial \phi}{\partial t} = \delta_{\epsilon}(\phi) \left[\operatorname{div} \left(\frac{\nabla \phi}{|\nabla \phi|} \right) + \lambda (f - c^{i})^{2} - \lambda (f - c^{e})^{2} \right]$$

T. Chan, Esedoglu, and Nikolova (06): $\hat{\phi} = \arg \min_{0 \le \phi \le 1} \left\{ \int_{\Omega} \left[\frac{\lambda}{2} (f - c^{i})^{2} - \frac{\lambda}{2} (f - c^{e})^{2} \right] \phi(x) + \left| \int_{\Omega} |\nabla \phi| \right\},$ and $\Omega^{i} := \{x : \hat{\phi}(x) \ge \rho\}$ for a.e. $\rho \in [0, 1].$ thresholding $\hat{\phi}$ by ρ to get Ω^{i} and hence Γ

Convexified Chan-Vese Model

$$E_{\rm CV}(\Gamma, c^i, c^e) = \frac{\lambda}{2} \int_{\Omega^i} (\mathbf{f} - c^i)^2 + \frac{\lambda}{2} \int_{\Omega^e} (\mathbf{f} - c^e)^2 + \text{Length}(\Gamma)$$

Minimize by Alternating Direction Method:

Outline

- 1. Mumford-Shah Model
- 2. Two-stage Image Segmentation Method
- **3. Three-stage Color Segmentation Model**
- 4. Convex/Nonconvex Model
- 5. Hyperspectral Image and Point Cloud Classification

Our Motivation

(a): True binary image

(b): Smooth image of (a)

Our Motivation

(d): Difference of (a) and (c) (nonzero pixel values only at the boundary)

> piecewise-constant approximation

(d): Difference of (a) and (c) (nonzero pixel values only at the boundary)

> thresholding smooth function

Aim in Segmentation

Stage One: Convex Variant of the M-S Model

Mumford-Shah Model for SBV

Explanation of the approximation:

For functions of bounded variations ([Ambrosio-Giorgi, 88]), Mumford-Shah model becomes

$$\min_{g \in SBV} \Big\{ \frac{\lambda}{2} \int_{\Omega} |\boldsymbol{f} - g|^2 + \frac{\mu}{2} \int_{\Omega \setminus \boldsymbol{J}_{\boldsymbol{g}}} |\nabla g|^2 + \mathcal{H}^1(\boldsymbol{J}_{\boldsymbol{g}}) \Big\},\,$$

where J_g is the jump set of g and \mathcal{H}^1 is the Hausdroff measure of dimension 1.

- \square See [Cagnetti & Scardia, 08] and [Strekalovskiy *et al.*, 12]
- \Box If g is binary and piecewise-constant, then $J_g = \Gamma$ and

$$\mathcal{H}^1(J_g) = \operatorname{Length}(\Gamma) = \int_{\Omega} |\nabla g|$$

Convex Variant of the M-S Model

Two-Stage Segmentation Method

Stage One: Extension to Blur/Projected Problems

Extendable to images corrupted by blur or projection \mathcal{A} .

Unique Minimizer for Stage One

Our *convex* variant of the Mumford-Shah model is:

$$E(g) = \frac{\lambda}{2} \int_{\Omega} (f - \mathcal{A}g)^2 dx + \frac{\mu}{2} \int_{\Omega} |\nabla g|^2 dx + \int_{\Omega} |\nabla g| dx$$

Its discrete version is:

$$\frac{\lambda}{2} \|f - \mathcal{A}g\|_2^2 + \frac{\mu}{2} \|\nabla g\|_2^2 + \|\nabla g\|_1$$

Theorem

Let Ω be a bounded connected open subset of \mathbb{R}^2 with a Lipschitz boundary. Let $\operatorname{Ker}(\mathcal{A}) \cap \operatorname{Ker}(\nabla) = \{0\}$ and $f \in L^2(\Omega)$, where \mathcal{A} is a bounded linear operator from $L^2(\Omega)$ to itself. Then E(g) has a unique minimizer $\hat{g} \in W^{1,2}(\Omega)$.

Our Two-stage Segmentation Algorithm

Numerical Aspects: Stage One (Smoothing)

Numerical Aspects: Stage Two (Thresholding)

Advantages of Smooth-&-threshold (SaT) Method

Advantages

- $\Box \text{ Stage 1 model for finding } \hat{g} \text{ is } \\ \text{convex} \\$
- $\Box \text{ Stage 2 uses the same } \hat{g} \text{ when } \\ \text{thresholds } \rho_i \text{ or } K \text{ change } \\ \text{(No need to recompute } \hat{g}) \\ \end{array}$
- $\Box \text{ No need to fix } \frac{K}{K} \text{ at the very beginning}$
- Easily adapted to different kinds of corruptions (e.g. blur, projection, non-Gaussian noise)

Motion Blurred and Noisy Image: Stage 1 Solution

2-phase image under vertical motion blur and Gaussian noise:

Given image

blurry & noisy image

Our solution \hat{g}

Motion Blurred and Noisy Image

Robust with respect to the thresholds chosen

4-phase Segmentation of Noisy and Blurry Image

Segmentation Changes with Threshold

 Γ changes as ρ changes. But no need to solve for \hat{g} again. Just threshold \hat{g} to get the phases.

Tubular MRA Image: Stage 1 Solution

Given magnetic resonance anigography image

Our solution \hat{g}

Tubular MRA Image

Chan-Vese (01)

Yuan et al. (10)

$\rho_{\{K=2\}} = 0.40\overline{19}$

Dong et al. (10) Cai et al. (13) $\rho_{\text{mean}} = 0.1760$ Cai, C., and Zeng, SIAM J. Imag. Sci. (2013)

Segmentation under Poisson or Gamma Noise

First stage: given f, solve

$$\min_{g} \left\{ \lambda \int_{\Omega} (\mathcal{A}g - f \log \mathcal{A}g) dx + \frac{\mu}{2} \int_{\Omega} |\nabla g|^2 dx + \int_{\Omega} |\nabla g| dx \right\}.$$

□ data fitting term good for Poisson noise from MAP analysis
□ also good for multiplicative Gamma noise (Steidl and Teuber (10))
□ objective functional is convex (solved by Chambolle-Pock)
□ admits unique solution ĝ if Ker(A) ∩ Ker(∇) = {0}

Second stage: threshold the solution \hat{g} to get the phases.

3-object Image with Poisson Noise and Motion Blur

Fractal Tree with Gamma Noise and Gaussian Blur

Airplane with Multiplicative Gamma Noise

Original image

Noisy image

Li et al. (10)

Yuan et al. (10)

SaT with $\{\rho_i\}_{i=1}^2$ from K-means

4-phase with Close Intensity under Poisson Noise

Image with Close and Varying Intensities

Multi-phase: iteration numbers and CPU time in second

	Yuan		Li		Our Method	
Test	iter.	time	iter.	time	iter.	time
Airplane	127	1.0	95	1.0	86	0.2
4-phase	57	2.2	49	1.6	184	2.3
Close-intensity	34	1.8	110	4.0	84	0.5
Varying-intensity	114	4.4	332	9.9	444	3.0
MRA	76	25.7	114	26.4	19	0.6

C., Yang, and Zeng, SIAM J. Imag. Sci. (2014)

Outline

- 1. Mumford-Shah Model
- 2. Two-stage Image Segmentation Method
- **3. Three-stage Color Segmentation Model**
- 4. Convex/Nonconvex Model
- 5. Hyperspectral Image and Point Cloud Classification

Is 2-stage Enough for Color Images?

noisy image

K-mean thresholding

RGB: strong inter-channel correlation

Less-correlated Color Space

RGB: strong inter-channel correlation

Lab channels: less correlated Thresholding using all six-channels

Three-stage (SLaT) Method for Color Images

Stage 1 (smoothing): given $f = (f_1, f_2, f_3)$, solve

$$\min_{g_i} \left\{ \lambda \int_{\Omega} (\mathcal{A}g_i - \mathbf{f}_i)^2 dx + \frac{\mu}{2} \int_{\Omega} |\nabla g_i|^2 dx + \int_{\Omega} |\nabla g_i| dx \right\}, \ i = 1, 2, 3,$$

to obtain smooth unique solution $\hat{g} = (\hat{g}_1, \hat{g}_2, \hat{g}_3)$.

Stage 2 (lifting):

 \Box transform \hat{g} to another color space $\bar{g} = (\bar{g}_1, \bar{g}_2, \bar{g}_3)$ with less-correlation among the channels

 \Box Then form the uplifted image $g = (\hat{g}_1, \hat{g}_2, \hat{g}_3, \bar{g}_1, \bar{g}_2, \bar{g}_3)$

Stage 3 (thresholding): Use K-means to threshold uplifted image g to get the phases.

2-phase Segmentation for Noisy Color Image

6-phase Segmentation for Noisy & Blurry Image

Pock et al. (09)

blurry & noisy

Strorath *et al.* (14)

Li et al. (10)

SaT with thresholds from K-means

10-pixel vertical motion blur with Gaussian noise.

3-phase Segmentation for Noisy & Blurry Image

Clean image

Pock et al. (09)

blurry & noisy

Strorath *et al.* (14)

Li et al. (10)

SaT with thresholds from K-means

10-pixel vertical motion blur with $\ensuremath{\textbf{Poisson noise}}$ added

4-phase Segmentation for Pixel-loss Color Image

60% pixel loss with Poisson noise added

Cai, C., Nikolova, and Zeng, J. Sci. Comput., (2017)

Outline

- 1. Mumford-Shah Model
- 2. Two-stage Image Segmentation Method
- **3. Three-stage Color Segmentation Model**
- 4. Convex/Nonconvex Model
- 5. Hyperspectral Image and Point Cloud Classification

Smooth-and-Threshold (SaT) Method

Relationship with Image Restoration

Relationship with Image Restoration

Non-convex Regularizers

Our Non-convex Regularizer

$$\phi(t;T,a) := \begin{cases} \frac{a(T_2-T)}{2T}t^2 & t \in [0,T) \\ -\frac{a}{2}t^2 + aT_2t - \frac{aTT_2}{2} & t \in [T,T_2) \\ \frac{aT_2(T_2-T)}{2} & t \in [T_2,\infty) \end{cases}$$
with $T_2 = T + \frac{1}{a^2}$

$$(0.04)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(100)$$

$$(10$$

52

Convex Non-convex Model

C., Lanza, Morigi, Sgallari, Num. Math., 2018

Two-Stage Convex Non-convex Segmentation

Convex Non-convex SaT Segmentation Method

4-phase with Close Intensity

Regions 1 to 4 by convex non-convex SaT

Outline

- 1. Mumford-Shah Model
- 2. Two-stage Image Segmentation Method
- 3. Three-stage Color Segmentation Model
- 4. Convex/Nonconvex Model
- 5. Hyperspectral Image and Point Cloud Classification

Hyper-spectral Image Classification

analyze the material for each pixel

Training pixels 10% = 1048 pixels

OundSinoothS&M-Methshold (SaT) Approach

Indian Pines Data Set

 \Box Data size: 145×145 (spatial) $\times 200$ (spectral)

Close spectrum between classes

Indian Pines Data Set

Error heat map over 10 trials with random 10% training pixels

SVM

ground-truth

[3, 6.32s]

MFASR

[10, 443s]

EPF [4, 6.92s]

SaT method

[5, 8.24s]

61

Comparison with Other Methods

Accuracy over 10 random trials

_	SVM	SVM-CK	\mathbf{EPF}	SC-MK	MFASR	SaT	gain
overall accuracy	79.78%	92.11%	93.34%	97.83%	97.88%	98.83%	0.95%
average accuracy	80.11%	92.68%	95.95%	98.35%	97.91%	98.88%	0.35%
kappa	76.90%	91.01%	92.36%	97.52%	97.58%	98.66%	1.08%

 \Box overall accuracy: percentage of correctly classified pixels

 \Box average accuracy: average of the accuracy in each class

 \Box kappa: Cohen's kappa coefficient

SVM [Melgani et al., 2004], SVM-CK [Camps-Valls et al., 2006],
EPF [Kang et al., 2014], SC-MK [Fang et al., 2015],
MFASR [Fang et al., 2017].

Effect of the High-order Smoothing Term

Accuracy over 10 random trials

	SaT with $\ \nabla g\ ^2$	SaT without $\ \nabla g\ ^2$	gain
overall	98 83%	97 26%	1 57%
accuracy	30.0370	51.2070	1.01/0
average	98 88%	95 89%	2 99%
accuracy	50.0070	55.0570	2.0070
kappa	98.66%	96.86%	1.80%

overall accuracy: percentage of correctly classified pixels
 average accuracy: average of the accuracy in each class
 kappa: Cohen's kappa coefficient

C., Kan, Nikolova, and Plemmons, arXiv 1806.00836.

Point Cloud Segmentation

10% training

Result on 3-moon Segmentation

Average accuracy over 10 random trials

	accuracy
MBO [2014]	99.12%
$GL \ [2014]$	98.4%
Ke I [2016]	98.4%
Ke II [2016]	98.6%
CVM [2017]	98.71%
SaT method	99.23%
gain	0.11%

MBO, GL [Garcia-Cardona *et al.*, 2014],
Ke I, II [Ke & Tai, 2016],
CAM [Bae & Merkurjev, 2017]

Cai, C., Xie & Zeng, in preparation.

Conclusions

□ SaT (Smooth-and-Threshold) framework looks for smooth solutions before segmenting or classifying

☐ Convex segmentation model with unique solution
 —can be solved easily and fast

- □ Model solved only once—no need to solve the model again when threshold or number of phases changes
- Easily extendable to blurry images, non-Gaussian noise, image with information loss, color images, hyper-spectral images, and point cloud images

 \Box Link image segmentation and image restoration

Collaborators

 \Box Xiaohao Cai, University College London

- □ Tieyong Zeng, Hongfei Yang, Kelvin Kan, & Xiaoyu Xie The Chinese University of Hong Kong
- \Box Mila Nikolova, ENS, Cachan
- □ Alessandro Lanza, Serena Morini, and Fiorella Sgallari, University of Bologna
- □ **Robert Plemmons**, Wake Forest University

Related work with:

- □ Carola-Bibiane Schönlieb, University of Cambridge
- □ Gabriele Steidl, University of Kaiserslautern

References

- □ X. Cai, R. Chan, and T. Zeng, A 2-stage image segmentation method using a convex variant of the Mumford-Shah model and thresholding, *SIAM J. Imag. Sci.*, (2013).
- □ R. Chan, H. Yang, and T. Zeng, A 2-stage image segmentation method for blurry images with Poisson or multiplicative Gamma noise, *SIAM J. Imag. Sci.*, (2014).
- □ X. Cai, R. Chan, M. Nikolova, and T. Zeng, A 3-stage approach for segmenting degraded color images: Smoothing, Lifting and Thresholding (SLaT), J. Sci. Comput., (2017)
- □ R. Chan, A. Lanza, S. Morigi, and F. Sgallari, Convex non-convex image segmentation, *Numer. Math.*, (2018).
- □ R. Chan, K. Kan, M. Nikolova, and R. Plemmons, A two-stage method for spectral-spatial classification of hyperspectral images, arXiv 1806.00836.
- □ X. Cai, R. Chan, X. Xie, and T. Zeng, A smooth-and-thresholding method for point-cloud classification, in preparation.

Thank You!

 $www.math.cuhk.edu.hk \verb|\~rchan$