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Aim: One Framework to Segment Different Images
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Hyper-spectral Image and Point Cloud Classification

Gunounekttiradh 10% training pixels
(98.88% accurate)

10% training ' % -\Eﬁg{ 99.23% accurate
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Outline

1. Mumford-Shah Model

2. Two-stage Image Segmentation Method
3. Three-stage Color Segmentation Model
4. Convex/Nonconvex Model

5. Hyperspectral Image and Point Cloud Classification



Segmentation: Problem Setting and Notation

Given a corrupted image [,

want a K -phase K —
segmentation = N
Q\ T =uU;Q;,
find a piecewise g = ¢; in $);,
constant approximation 1 =1,2,3,4
N J

with K constant
regions




Mumford-Shah Model (1989) [cited 5,700+ time]

minimize .

-

-

Data fidelity:
control g not far
away from [

~

/

Mumford-Shah Energy
EMS (g7 F)

[l

2 Jo(f =9z ) + (& Jor [ValPde ) +

-

-

Regularization:

impose smoothness
of gon Q\ T

~

/

Highly non-convex problem

Length(T")

-

-

\
Regularization:

require boundary

[ be short
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Simplifying Mumford-Shah Model

Mumford-Shah Energy Simplify it:
Vg=0on Q\T

~

G/Iultiphase Chan-Vese Model (02)
(minimizer g is piecewise constant):

Envs({ci), T) Z/ (f—ci)?+Length(T)
- /




2-phase Chan-Vese Model (2001) [cited 10,200+ times]

A A

Boy (L. %) = ) /Q (fe+5 fQ ()’ +Length(T)

ct ()

Minimize by Alternating Direction Method:
0 L
Step 1: Given I', minimize ¢* and ¢,

1. ¢ = average of f in *

2. c® = average of f in Q° ¢
| 0 Y
Step 2: Given ¢' and ¢¢, find T. / _________ b <0
L
Express I' as zero-contour of Qe
a level set function ¢ and /

minimize w.r.t. ¢.



How to Solve the Level-set Function?
Minimizing ¢ in:
A 1\2 é P 201 __
> [U=err@+] [ -Pa-H@)+ [ 6V

where H(-) is the Heaviside function, and § = H’.

Fuler-Lagrange equation for ¢:

5(9) [div (%) +AMf =) = \f — c€)2] = 0.

Change to parabolic and solve by time-marching:

S =500) [aiv (oo ) + MG = - a - 2]



Convexified Chan-Vese Model

Smooth [delta function §(-) by d.(-):

%0 — s/ 1[dw (%) FA( = )2 = A(f - )] -

T. Chan, Esedoglu, and Nikolova (06):
i A o A \
b =g min { [ |30 = e = 50— 2| ota) +{ [ 70},
Q

0<p<1 2

v

and QF := {x : ¢(z) > p} for a.e. p €0, 1].

\

[thresholding QB by p to|get QY and hence F]
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Convexified Chan-Vese Model

A A

Ecv(T, ', c%) = 5/(f—cz)2+§fe(f c)*4+Length(T")

Minimize by Alternating Direction Method:

Step 1: Given I', minimize ¢! and c°. ADM:
Many convex
problems to solve

1. ¢* = average of f in Q°
e __ ] €
2. c¢® = average of f in () Ours:

. Only 1 convex
Step 2: Given ¢* and ¢, find I'. problem to solve

Express I' as zero-contour of
a level set function ¢ and convexify ¢

minimize w.r.t. . (T. Chan et al. (06))
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Outline

Mumford-Shah Model

Two-stage Image Segmentation Method
Three-stage Color Segmentation Model
Convex/Nonconvex Model

Hyperspectral Image and Point Cloud Classification
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Our Motivation

(a): True binary image

O™

Y

(b): Smooth image of (a)
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Our Motivation

(d): Difference of (a) and (c) (d): Difference of (a) and (c)

(nonzero pixel values (nonzero pixel values
only at the boundary) only at the boundary)
piecewise-constant thresholding

approximation smooth function ”



Alm In Segmentation

[Chan—Vese: Get a piecewise constant approximation g of f J

_>

Our idea:

smooth

— | approx. |/ > [threshold g J -

gotf

e

.

segmentation

\

J

N

e

.

segmentation

\

J
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Stage One: Convex Variant of the M-S Model

Restrict:
g€ WhH(Q)

=0 apprommated

Convex M-S Energy
E(g)

Mumford-Shah Energy
Ens (gv P)
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Mumford-Shah Model for SBV

Explanation of the approximation:

For functions of bounded variations (|Ambrosio-Giorgi, 88]),
Mumford-Shah model becomes

: A 2 M 2 1
gggglv{zfﬂ\f 9| +2/Q\Jg Vgl +H (Jg)},

where J, is the jump set of g and H' is the Hausdroff
measure of dimension 1.

L] See [Cagnetti & Scardia, 08] and [Strekalovskiy et al., 12]

L1 If g is binary and piecewise-constant, then J, =I" and

H'(J,) = Length(T / Vg

17



Convex Variant of the M-S Model

Mumford-Shah Energy
Ens (gv P)

Convex M-S Energy
E(g)

)

Restrict:
g€ WhH(Q)
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Two-Stage Segmentation Method

Convex M-S Energy

< stage 1 <—
o f

Il
Gt =ora> + Chalvais ) + lvilie
|

[ smooth solution g ]

A4

v

Threshold g to
piecewise constant
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Stage One: Extension to Blur/Projected Problems
Convex M-S Energy

stage 1
o

Il
Clatr=ori> + Clalvain > + lvilie

f+ Ag+n

=40+ (e + Civue >

Extendable to images corrupted by blur or projection A.
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Unique Minimizer for Stage One

Our convex variant of the Mumford-Shah model is:

[E(Q) = ;/Q(fAg)QdfcﬂLg/QVgIzder/QngfE}

Its discrete version 1is:

A z
[§||f — Aglls + §||Vg||3 + IIVglll]

Theorem

Let Q be a bounded connected open subset of R? with a Lipschitz
boundary. Let|Ker(A)Ker(V) = {0}|and f € L?(2), where A
is a bounded linear operator from L?(X1) to itself. Then E(g) has
a unique minimizer § € WH2(Q).
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Our Two-stage Segmentation Algorithm

Given f

Only 1 convex
problem to solveé

Stage 1: Solve g in

T~
min, {21 — Ag|3+
No iterations £ HVgHg + vaﬂl}
between
Stages 1
. and Stage 2: determine
tages 2 threshold p from g

by mean or K-mean

l

K phases

§<0.19



.Numerical Aspects: Stage One (Smoothing)

Given f
l smoothing
Stage 1: solve g in solve by e.g. alternating
min, {%Hf — Ag||3+ T direction method with
LIVglz+ Vgl } multipliers (ADMM)

l

Stage 2: determine
thresholds {p;}: "
from ¢

l

K phases

23



.Numerical Aspects: Stage Two (Thresholding)

Given f
l thresholding

Stage 1: solve g in

min, {%Hf — AQH%—I— L] 2-phase: mean of g
SIIVall3 + Vgl }

[ K-phase: use K-means on ¢ to get

l K clusters and their centroids
/ {m;} |; then set thresholds
Stage 2: determine
thresholds {p;} <71 iy = ] kil
from ¢ x
K phases | | | | >

24



Advantages of Smooth-&-threshold (SaT) Method

Given f

l

Stage 1: solve g in

min, {3 f — Ag||3+
LIVgli5+ 1IVyll1}

l

Stage 2: determine
thresholds {p;}: "
from ¢

l

K phases

Advantages

L] Stage 1 model for finding § is
convex

L] Stage 2 uses the same § when
thresholds p;, or K change
(No need to recompute g)

L] No need to fix K at the very
beginning

L] Easily adapted to different
kinds of corruptions (e.g. blur,
projection, non-Gaussian noise)
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Motion Blurred and Noisy Image: Stage 1 Solution

2-phase image under vertical motion blur and Gaussian noise:

Given image blurry & noisy image Our solution ¢

26



Motion Blurred and Noisy Image

I

Chan-Vese (01) Dong et al. (10) Yuan et al. (10)

i =

s
. |

| 4 u
LY
™,
"

A\,

w ] L
" ~ N
TR L

=
——
"

€

Pmean — 0.7761 Puser — 0.6 P{K=2} = 0.5048

Robust with respect to the thresholds chosen
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4-phase Segmentation of Noisy and Blurry Image

Noisy & blurry Yuan et al. (10) Li et al. (10)
1

Sandberg et al. (10)  Steidl et al. (12)  Our 4 phases from ¢
using K-means p; 28



Segmentation Changes with Threshold

I

[' changes as p changes. But no need to solve for g again.
Just threshold g to get the phases.
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Tubular MRA Image: Stage 1 Solution

Given magnetic resonance Our solution ¢
anigography image

30



Tubular MRA Image

Yuan et al. (10)

Dong et al. (10) Cai et al. (13)
Cai, C., and Zeng, SIAM J. Imag.

Pmean = 0.1760
Sci. (2013)
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Segmentation under Poisson or Gamma Noise

First stage: given f, solve

min{)\/ (Ag—flogAg)da:—l—E/ \Vg\zdx—l—/ |Vg\d:c}.
Q 2 Ja Q

g

L] data fitting term good for Poisson noise from MAP analysis
LI also good for multiplicative Gamma noise (Steidl and Teuber (10))
L] objective functional is convex (solved by Chambolle-Pock)

[ admits unique solution g if Ker(A) N Ker(V) = {0}

Second stage: threshold the solution g to get the phases.
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3-object Image with Poisson Noise and Motion Blur

Dong et al. (10) Sawatzky et al. (13)
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Fractal Tree with Gamma Noise and Gaussian Blur

Yuan et al. (10)
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Airplane with Multiplicative Gamma Noise

Original image Noisy image

Yuan et al. (10) Li et al. (10) SaT with {p;};_,
from K-means
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4-phase with Close Intensity under Poisson Noise

[][]

Original image Poisson noise

Yuan et al. Li et al. SaT with {p;}7_
from K-means
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Image with Close and Varying Intensities

Original image Poisson noise

Yuan et al. (10) Li et al. (10) SaT with {p;}3_,

from K-means
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CPU Time

Multi-phase: iteration numbers and CPU time in second

Yuan Li Our Method

Test iter. | time | iter. | time | iter. time
Airplane 127 1.0 95 1.0 86 0.2
4-phase 57 2.2 49 1.6 | 184 2.3
Close-intensity 34 1.8 | 110 4.0 84 0.5
Varying-intensity | 114 4.4 | 332 9.9 | 444 3.0
MRA 76 | 25.7 | 114 | 264 19 0.6

C., Yang, and Zeng, STAM J. Imag. Sci. (2014)
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Outline

Mumford-Shah Model

Two-stage Image Segmentation Method
Three-stage Color Segmentation Model
Convex/Nonconvex Model

Hyperspectral Image and Point Cloud Classification
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Is 2-stage Enough for Color Images?

K-mean thresholding

RGB: strong inter-channel correlation

40



Less-correlated Color Space

Lab channels: less correlated

Thresholding using all six-channels
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Three-stage (SLaT) Method for Color Images

Stage 1 (smoothing): given f = (f1, f2, f3), solve

min {)\/ (Agi—fi)2dzc—|—ﬁf |ng-|2da:—|—/ |Vg,,;|d:c},i:1,2,3,
Q 2 Q Q

gi

to obtain smooth unique solution § = (g1, g2, §3)-

Stage 2 (lifting):

I transform § to another color space § = (g1, g2, g3) with less-
correlation among the channels

] Then form the uplifted image g = (g1, G2, 93, 91, 2, J3)

Stage 3 (thresholding): Use K-means to threshold uplifted image
g to get the phases.
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2-phase Segmentation for Noisy Color Image

Clean image Noisy image Li et al.

Pock et al. (09) Strorath et al. (14) Sal with thresholds

from K-means
(Gaussian noise with s.d. 0.1. 43



6-phase Segmentation for Noisy & Blurry Image

Clean image lrr & oisy | Li et al. (10)

Pock et al. (09) Strorath et al. (14)  Sal with thresholds
from K-means

10-pixel vertical motion blur with Gaussian noise. a4



3-phase Segmentation for Noisy & Blurry Image

\

Clean image blurry & noisy Li et al. (10)

Pock et al. (09) Strorath et al. (14)  SaT with thresholds
from K-means

10-pixel vertical motion blur with Poisson noise added
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4-phase Segmentation for Pixel-loss Color Image

R

Noisy imae Li et al. (10)

Pock et al. ‘09 Strorath et al. (14) Sa’l" with p‘K:4

60% pixel loss with Poisson noise added

Cai, C., Nikolova, and Zeng, J. Sci. Comput., (2017)



Outline

Mumford-Shah Model

Two-stage Image Segmentation Method
Three-stage Color Segmentation Model
Convex/Nonconvex Model

Hyperspectral Image and Point Cloud Classification
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Smooth-and-Threshold (SaT) Method

Convex M-S Energy
E(g)

N

Cotnse D[]

[l

!

[ smooth solution g ]

A4

v

Threshold g to
piecewise constant

48



Relationship with Image Restoration

Convex M-S Energy

ﬁeduce by introducing\
higher-order derivative:

> 'T. Chan (00), Lysaker (03),
Steidl (08), Bredies (10),
\Hmtermuller (06), etc. Y

ROF Model (1992)
Rudin, Osher and Fatemi| staircase

49



Relationship with Image Restoration

[l

[Hintermiiller (2006): image restoration model]

[ restoration ] E::,IJ [ thresholding] = [segmentation]

Cai & Steidl, EMMCVPR, 2013:

[ ROF model ] [ [thresholding] = [ Chan-Vese ]

50




Non-convex Regularizers

Convex M-S Energy

\

E(g)

[l

}

|

better restoration model +——

non-convex regularizer

better segmentation method

computational cost?

o1



Our Non-convex Regularizer

4 CL(TQ—T) 2
St tel0,T)
O(t;Tya) = ¢ —%t2+alot — L2 te[T,Ty)
CLTQ TQ—T i
\ ( 5 ) t € _1—'27 OO)
------------------- Yo
with 1o =T + a% 005 /
004l / concave
. 1’ 'a=3
f -a=5
w003 ) —a=7
I: I
= e e ——i i —————————_—
= 1 I»
0020 |»
62 ”!I
00t /,
I./
0 -
0 0.2 0.4 0.6 0.8 1
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Convex Non-convex Model

Convex Non-convex Energy
CNC(g)

non-convex regularizer

\ }

|

convex functional it A > 9a

C., Lanza, Morigi, Sgallari, Num. Math., 2018
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Two-Stage Convex Non-convex Segmentation

Convex Non- convex Energy - .
t

I
N anw@
|

[ smooth solution ¢ by ADMM ]

A4

v

Threshold g to
plecewise constant

54




Convex Non-convex SaT Segmentation Method

given image Chan-Vese Bae et al. Dong et al.
Sandberg et al. convex SaT convex SaT convex non-

+ K-means with p = .19 convex SaT e



4-phase with Close Intensity

p—

Regions 1 to 4 by convex Sa'T

O

Regions 1 to 4 by convex non-convex SaT



Outline

Mumford-Shah Model

Two-stage Image Segmentation Method
Three-stage Color Segmentation Model
Convex/Nonconvex Model

Hyperspectral Image and Point Cloud Classification
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Hyper-spectral Image Classification

analyze the material for each pixel

spatial

Our method Training pixels
10% = 1048 pixels

58



Ouad8moel=athd-Vietesiuold (SaT) Approach

Z
spectral // spectral stage 1
4 SVM
y4

- - ““_ probability
S - / in class k

A Enck d /

X4 //
spatial
stage 3 ;
. . max [/ class 1 map class k map
classification / stags <X smapshing

map L




Indian Pines Data Set

I Data size: 145 x 145 (spatial) x 200 (spectral)

I Close spectrum between classes

Alfalfa Corn-notill Corn-mintill Corn
10000 1p0o00 10000
# of training: 10 # of training: 143 # of training: 83 # of training: 24
5000 M~ 000 5000
e \ ,/H.\"- B h,./u—_._k hm \A‘a—-—-_
0 0 0
0 50 100 150 200 9) 50 00 50 200 19) 50 100 50 200 9] 50 TO0 50 200
Grass-pasture Grass-trees Grass-pasture-mowed Hay-windrowed
10000 10000 10000 10000
# of training: 48 i\ # of training: 73 # of training: 10 # of training: 48
5000 fan- 5000 W 5000 A ﬁ 5000 % h
0 0 0 0
U U 100 ToU ZUU [0] 20 100 100 200 0] o10] 100 100 200 0 50 100 150 200
Oats Soybean-notill Soybean-mintill Soybean-clean
10000 1p000 10000 10000
# of training: 10 # of training: 97 # of training: 246 # of training: 59
5000 m;“"\ﬁ 000 % 5000 [f& 5000
LN
"A-\ N — m,hm hhm
0 0 0 0
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 180 200
Wheat Woods Buildings-Grass-Trees-Drives Stone-Steel-Towers
10000 10000 10000 10000
# of training: 21 # of training: 127 # of training: 39 # of training: 10
5000 5000 5000 5000
0 0 0 0
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
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Indian Pines Data Set

Error heat map over 10 trials with random 10% training pixels

ground-truth

Background
Alfalfa

Corn-no till
Corn-mill till
Corn
Grass/pasture
Grass/trees
Grass/pasture-mowed
Hay-windrowed
Oats
Soybeans-no till
Soybeans-mill till

%ﬁbeans-clean SC-MK MFASR Sa’T method
eat

Woods [9, 9448] {10, 4438] [5, 8248}

Bidg-Grass-Tree-Drives
Stone-steel lowers

label color

O=_2NWhOIO~N®OS

heatmap
colorbar

mno. of parameters, time in seconds] 61



Comparison with Other Methods

Accuracy over 10 random trials

SVM | SVM-CK | EPF | SC-MK | MFASR | SaT | gain
overall 1 79 2gor | 92.11% | 93.34% | 97.83% | 97.88% | 98.83% | 0.95%
accuracy
WETAEE 1 90.11% | 92.68% | 95.95% | 98.35% | 97.91% | 98.88% | 0.35%
accuracy
kappa | 76.90% | 91.01% | 92.36% | 97.52% | 97.58% | 98.66% | 1.08%

L1 overall accuracy: percentage of correctly classified pixels

L1 average accuracy: average of the accuracy in each class

L] kappa: Cohen’s kappa coefficient

SVM [Melgani et al., 2004], SVM-CK [Camps-Valls et al., 2006],

EPF [Kang et al., 2014], SC-MK [Fang et al., 2015],
MFASR [Fang et al., 2017].
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Effect of the High-order Smoothing Term

Accuracy over 10 random trials

SaT with [|[Vg|? | SaT without ||Vg|* | gain

overall 98.83% 97.26% 1.57%
accura,cy

average 98.88% 95.89% 2.99%
accuracy

kappa 98.66% 96.86% 1.80%

L1 overall accuracy: percentage of correctly classified pixels

L1 average accuracy: average of the accuracy in each class

L] kappa: Cohen’s kappa coefficient

C., Kan, Nikolova, and Plemmons, arXiv 1806.00836.
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Point Cloud Segmentation

10% training

64



Our Smooth-and-Threshold (SaT) Approach

0,1,0)

pie o ' () L T
= . " . TR . Ae

#.stage 1 initalization ¥ ~ "% =70 AR

. . e o
R > oy o
":.';"{;"'__ ' "’ multiclass SVM .q:'f;‘ . '::.:.?E.;
Finh. L E et Be:
ﬁi

(0,0,1) T repeat R




Result on 3-moon Segmentation

Average accuracy over 10 random trials 3":%,» | ;1_:,

accuracy

MBO [2014] | 99.12% ':;r;:z‘ & |
GL [2014] 1 98.4% A
Ke I [2016] 98.4% e

Ke II [2016] | 98.6% R 10% training

SaT method | 99.23%
gain 0.11%

CVM [2017] | 98.71% l

MBO, GL |Garcia-Cardona et al., 2014], ~ " _
Ke I, II [Ke & Tai, 2016], S T
CAM [Bae & Merkurjev, 2017] b

Cai, C., Xie & Zeng, in preparation. . A



Conclusions

[]

[]

SaT (Smooth-and-Threshold) framework looks for
smooth solutions before segmenting or classifying

Convex segmentation model with unique solution
—can be solved easily and fast

Model solved only once—no need to solve the model
again when threshold or number of phases changes

Easily extendable to blurry images, non-Gaussian
noise, image with information loss, color images,
hyper-spectral images, and point cloud images

Link image segmentation and image restoration
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