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Inverse Problems

desire to calculate or estimate
causal factors

from a set of observations
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Inverse Problems are often Ill-Posed

Operator equation:
Lu = y

Setting:

Available data y δ of y are noisy

Focus: L is a linear operator

Ill-posed: Let u† be a solution:

y δ → y 6⇒ uδ → u†

A. N. Tikhonov
On the stability of inverse problems
Doklady Akademii Nauk SSSR 39. 1943
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Examples of Ill–Posed Problems: L=

1 Identity operator: Measurements of noisy data.
Applications: A.e.

2 X -Ray transform: Measurements of averages
over lines. Application: Computerized
Tomography (CT)

3 Radon transform: Measurements of averages
over hyperplanes. Application: Cryo-EM

4 Spherical Radon transform: Measurements of
averages over spheres. Application:
Photoacoustic Imaging

5 Circular Radon transform: Measurements of
averages over circles. Applications: Ground
Penetrating Radar and Photoacoustics
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An Application

GPR: Location of avalanche victims

Project with Wintertechnik AG and Alps
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Various Philosophies
Continuous approach: L : H1 → H2. Hi infinite
dimensional spaces

Semi-continuous approach: L : H → Rn. H
infinite dimensional space, finitely many
measurements

Discrete Setting: L : Rm → Rn. Large scale
inverse problems

Bayesian approach:L : Rm → Rn. Stochastic
inverse problems

A. N. Tikhonov
Solution of incorrectly formulated problems and the
regularization methods
Soviet Mathematics. Doklady 4. 1963

H. Engl, M. Hanke, and A. Neubauer
Regularization of inverse problems
Kluwer Academic Publishers Group, 1996

M. Unser, J. Fageot, and J. P. Ward
Splines are universal solutions of linear inverse
problems with generalized TV regularization
SIAM Review 59.4. 2017

C. R. Vogel
Computational Methods for Inverse Problems
SIAM, 2002

M. Hanke and P. C. Hansen
Regularization methods for large-scale problems
Surveys on Mathematics for Industry 3.4. 1994

J. Kaipio and E. Somersalo
Statistical and Computational Inverse Problems
Springer Verlag, 2005
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Deterministic Setting

From Continuous approach: L : H1 → H2. Hi infinite dimensional spaces
⇒

Semi-Continuous approach: P ◦ L with P[f ] = (f (xi ))i=1,...,n

Discrete approach: P ◦ L ◦ Q with Q[(ci )i=1,...,m](x) =
∑m

i=1 ciφ(x).
(φi ) family of test functions.

A. Neubauer and O. Scherzer
Finite-dimensional approximation of Tikhonov
regularized solutions of nonlinear ill-posed problems
Numer. Funct. Anal. Optim. 11.1-2. 1990

C. Pöschl, E. Resmerita, and O. Scherzer
Discretization of variational regularization in
Banach spaces
Inverse Probl. 26.10. 2010
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Various Methods to Solve

Backprojection formulas

Iterative Methods for linear and nonlinear inverse problems

Flow methods: Showalter’s methods and Inverse scale space methods

Variational methods: Tikhonov type regularization.

...

J. Radon
Über die Bestimmung von Funktionen durch ihre
Integralwerte längs gewisser Mannigfaltigkeiten
Berichte über die Verhandlungen der
Königlich-Sächsischen Gesellschaft der
Wissenschaften zu Leipzig,
Mathematisch-Physische Klasse 69. 1917

M. Hanke and P. C. Hansen
Regularization methods for large-scale problems
Surveys on Mathematics for Industry 3.4. 1994

B. Kaltenbacher, A. Neubauer, and O. Scherzer
Iterative regularization methods for nonlinear
ill-posed problems
Walter de Gruyter, 2008

O. Scherzer and C. W. Groetsch (2001). “Inverse
Scale Space Theory for Inverse Problems”. In:
Scale-Space and Morphology in Computer Vision.
Ed. by M. Kerckhove. Vol. 2106. Lecture Notes in
Computer Science. Vancouver, Canada: Springer,
pp. 317–325. isbn: 978-3-540-42317-1. doi:
10.1007/3-540-47778-0_29. url:
http://dx.doi.org/10.1007/3-540-47778-0_29

H. Engl, M. Hanke, and A. Neubauer
Regularization of inverse problems
Kluwer Academic Publishers Group, 1996

O. Scherzer, M. Grasmair, H. Grossauer,
M. Haltmeier, and F. Lenzen
Variational methods in imaging
Springer, 2009
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Outline

2 Numerical Differentiation

1 Variational Methods

3 General Regularization

4 Sparsity and `1-Regularization

5 TV-Regularization

6 Regularization of High-Dimensional Data
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Numerical Differentiation

Numerical Differentiation as an Inverse Problem

y = y(x) is a smooth function on 0 ≤ x ≤ 1

Given: Noisy samples y δi of y(xi ) on a uniform grid

∆ = {0 = x0 < x1 < · · · < xn = 1}, h = xi+1 − xi

satisfying ∣∣∣y δi − y(xi )
∣∣∣ ≤ δ

Boundary data are known exactly: y δ0 = y(0) and y δn = y(1)

Goal: Find a smooth approximation u′ of y ′

M. Hanke and O. Scherzer
Inverse problems light: numerical differentiation
Amer. Math. Monthly 108.6. 2001

M. Hanke and O. Scherzer
Error analysis of an equation error method for the
identification of the diffusion coefficient in a
quasi-linear parabolic differential equation
SIAM J. Appl. Math. 59.3. 1999
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Numerical Differentiation

Strategy I: Constrained Minimization

Approach: Continuous to discrete

1 ‖u′′‖2
L2 =

∫ 1
0 (u′′)2 dx → min among smooth functions u satisfying

I u(0) = y(0), u(1) = y(1),
I Constraint:

1

n − 1

n−1∑
i=1

(
yδ
i − u(xi )

)2 ≤ δ2

2 Minimizer u∗: u′∗ ≈ y ′
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Numerical Differentiation

Strategy II: Tikhonov Regularization

1 Let α > 0. Minimization among smooth functions u satisfying
u(0) = y(0), u(1) = y(1), of

uδα = argminΦ[u], Φ[u] =
1

n − 1

n−1∑
i=1

(
y δi − u(xi )

)2
+ α

∥∥u′′∥∥2

L2

2 uδα
′ ≈ y ′
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Numerical Differentiation

Strategy II: Tikhonov Regularization + Discrepancy
Principle

Theorem

If α is selected according to the discrepancy principle

1

n − 1

n−1∑
i=1

(
y δi − uδα(xi )

)2
= δ2

Then Strategy I and II are equivalent: uδα = u∗

V. A. Morozov
Methods for Solving Incorrectly Posed Problems
Springer, 1984
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Numerical Differentiation

Analysis of Constrained Optimization

Let

1 y ′′ ∈ L2(0, 1) (assumption on the data to be reconstructed) and

2 u∗ be the minimizer of Strategy II

Then ∥∥u′∗ − y ′
∥∥
L2 ≤

√
8
(
h
∥∥y ′′∥∥

L2︸ ︷︷ ︸
approx. error

+
√
δ ‖y ′′‖L2︸ ︷︷ ︸

noise influence

)

I. J. Schoenberg
Spline interpolation and the higher derivatives
Proceedings of the National Academy of Sciences
of the USA 51.1. 1964

M. Unser
Splines: a perfect fit for signal and image
processing
IEEE Signal Processing Magazine 16.6. 1999
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Numerical Differentiation

Textbook Example: Numerical Differentiation

Let y ∈ C 2[0, 1], then∣∣∣∣∣y δi+1 − y δi
h

− y ′(x)

∣∣∣∣∣ ≤ O( h︸︷︷︸
approx. error

+ δ/h︸︷︷︸
noise error

), xi ≤ x ≤ xi+1

Figure: h → h + δ/h (numerical differentiation) and

h → h +
√
δ (Tikhonov regularization) for fixed δ

y ′′ ∈ L2: h → h + δ/h is minimal
for h ∼

√
δ. Optimal rates for

Strategy I, II and numerical differ-
entiation is O(

√
δ)

The rate O(
√
δ) does not hold if

y ′′ /∈ L2(0, 1)

Otmar Scherzer (CSC & RICAM) Regularization of Inverse Problems June 7, 2018 15 / 70



Numerical Differentiation

Properties of u∗

Theorem

a solution u∗ of Strategy I exists

u∗ is a natural cubic spline, i.e.,
I a function that is twice continuously differentiable over [0, 1] with
I u′′∗ (0) = u′′∗ (1) = 0, and coincides on each subinterval [xi−1, xi ] of ∆

with some cubic polynomial

Generalizations of the ideas to non-quadratic regularization and general inverse problems
in Adcock and A. C. Hansen 2015; Unser, Fageot, and Ward 2017

B. Adcock and A. C. Hansen
Generalized sampling and the stable and accurate
reconstruction of piecewise analytic functions from
their Fourier coefficients
Math. Comp. 84.291. 2015

M. Unser, J. Fageot, and J. P. Ward
Splines are universal solutions of linear inverse
problems with generalized TV regularization
SIAM Review 59.4. 2017
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General Regularization

General Variational Methods: Setting

General: Numerical differentiation:

H1 and H2 are Hilbert spaces H1 = W 2
0 (0, 1) = {w :

w ,w ′ ∈ L2(0, 1)} and
H2 = Rn−1

L : H1 → H2 linear and
bounded

L : W 2
0 (0, 1)→ Rn−1,

u 7→ (u(xi ))1≤i≤n−1

ρ : H2 × H2 → R+ similarity
functional

ρ(ξ, ν) = 1
n−1

∑n−1
i=1 (ξi − νi )2

R : H1 → R+ an energy
functional

R[u] =
∫ 1

0 (u′′)2 dx

δ: estimate for the amount of
noise

1
n−1

∑n−1
i=1 (yi − y δi )2 ≤ δ2.
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General Regularization

Three Kind of Variational Methods (τ ≥ 1)

1 Residual method:

uδα = argminR(u)→ min subject to ρ(Lu, y δ) ≤ τδ

2 Tikhonov regularization with discrepancy principle:

uδα := argmin
{
ρ2(Lu, y δ) + αR(u)

}
,

where α > 0 is chosen according to Morozov’s discrepancy principle,
i.e., the minimizer uδα of the Tikhonov functional satisfies

ρ(Luδα, y
δ) = τδ

3 Tikhonov regularization with a–priori parameter choice: α = α(δ)
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General Regularization

Relation between Methods

E.g. R convex and ρ2(a, b) = ‖a− b‖2

Residual Method ≡ Tikhonov with discrepancy principle

Note, this was exactly the situation in the spline example!

V. K. Ivanov, V. V. Vasin, and V. P. Tanana
Theory of linear ill-posed problems and its
applications
VSP, 2002
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General Regularization

R-Minimal Solution

If L has a null-space, we concentrate on a particular solution.
The R-Minimal Solution is denoted by u† and satisfies:

R(u†) = inf{R(u) : Lu = y}

Uniqueness of R-minimal solution: For instance if R is strictly convex
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General Regularization

Regularization Method

A method is called a regularization method if the following holds:

Stability for fixed α: y δ →H2 y ⇒ uδα →H1 uα

Convergence: There exists a parameter choice α = α(δ) > 0 such
that y δ →H2 y ⇒ uδα(δ) →H1 u†

It is an efficient regularization method if there exists a parameter choice
α = α(δ) such that

D(uδα(δ), u
†) ≤ f (δ) ,

where

D is an appropriate distance measure

f rate (f → 0 for δ → 0)
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General Regularization

Importance of Topologies

It is important to specify the topology of the convergence. Typically
Sobolev or Besov spaces.

Example

Differentiation is well-posed from W 1
0 (0, 1) into L2(0, 1), but not from

L2(0, 1) into itself. Take

x → fn(x) :=
1

n
sin(2πnx)

Then
x → f ′n(x) := 2π cos(2πnx)

Note

‖fn‖2
W 1

0 (0,1) =
1

2

1

n2
+ π → π ∼

∥∥f ′n∥∥2

L2(0,1)
= π but ‖fn‖2

L2(0,1) =
1

2

1

n2
→ 0
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General Regularization

Quadratic Regularization in Hilbert Spaces

uδα = argmin
{
‖Lu − y δ‖2

H2
+ α‖u − u0‖2

H1

}
Results:

Stability (α > 0): y δ →H2 y ⇒ uδα →H1 uα

Convergence: Choose

α = α(δ) such that δ2/α→ 0

If δ → 0, then uδα → u†

Note that u† is the R(·) = ‖· − u0‖2 minimal solution
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General Regularization

Convergence Rates (The Simplest Case)
Assumptions:

Source Condition: u† − u0 ∈ L∗η

α = α(δ) ∼ δ

Result: ∥∥∥uδα − u†
∥∥∥2

= O(δ) and
∥∥∥Luδα − y

∥∥∥ = O(δ)

Here L∗ is the adjoint of L, i.e.,

〈Lu, y〉 = 〈u, L∗y〉

If L ∈ Rm×n, then L∗ = LT ∈ Rn×m

If L = Radon transform, the L∗ is backprojection operator

C. W. Groetsch
The Theory of Tikhonov Regularization for
Fredholm Equations of the First Kind
Pitman, 1984

H. Engl, M. Hanke, and A. Neubauer
Regularization of inverse problems
Kluwer Academic Publishers Group, 1996
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General Regularization

Convergence Rates for the Spline Example

Recall Lu = u(0.5) (just one sampling point) and ∆ = {0, 0.5, 1}.
Adjoint operator of L : W 2

0 (0, 1)→ R, L∗ : R→W 2
0 (0, 1).

Let z be the solution of

z(IV )(x) = δ0.5(x)

satisfying z(0) = z(1) = z ′′(0) = z ′′(1) = 0 and z(0.5) = 1 and
C 2-smoothness, i.e. it is a fundamental solution.

Then z is a natural cubic spline! 1

1Note that a cubic spline is infinitely often differentiable between sampling point and
the third derivative jumps. Thus fourth derivative is a δ-distribution at the sampling
points
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General Regularization

Adjoint for the Spline Example

Let v ∈ R

〈Lu, v〉R = Luv = v

∫ 1

0
u(x)δ0.5(x) dx = v

∫ 1

0
u(x)z(IV )(x) dx

=

∫ 1

0
u′′(x)

(
vz ′′(x)

)
dx = 〈u, vz〉W 2

0 (0,1)

Thus L∗v(x) = vz(x).
A convergence rate O(

√
δ) holds if the solution is a natural cubic spline

and u†′′ ∈ L2(0, 1) (integration by parts)
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General Regularization

Classical Convergence Rates - Spectral Decomposition

First, let L ∈ Rn×m be a matrix:

L = ΨTΛΦ with Φ ∈ Rm×m,Ψ ∈ Rn×n orthogonal

and Λ diagonal with rank ≤ min {m, n}.
Then

L∗L = LTL = ΦTΛΨΨTΛDΦ = ΦTΛ2Φ

which rewrites to

L∗Lu =

min{m,n}∑
n=1

λ2
n〈u, φn〉φn =

∫ ∞
0

λ2 〈u, φn〉δλndx︸ ︷︷ ︸
=de(λ)u
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General Regularization

Classical Convergence Rates (Generalized)

Spectral Theory:

L∗L is a bounded, positive definitive, self-adjoint operator

L∗Lu =
∫∞

0 λ2de(λ)u, where e(λ) denotes the spectral measure of
L∗L

If L is compact, then

L∗Lu =
∞∑
n=0

λ2
n〈u, φn〉φn ,

where (λ2
n, φn) are the spectral values of L
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General Regularization

Classical Convergence Rates

Source Condition: u† − u0 ∈ (L∗L)νη, ν ∈ (0, 1]

α = α(δ) ∼ δ
2

2ν+1

Result: ∥∥∥uδα − u†
∥∥∥ = O(δ

2ν
2ν+1 ) and

∥∥∥Luδα − y
∥∥∥ = O(δ)

Note, that for ν = 1/2

R((L∗L)1/2) = R(L∗)

C. W. Groetsch.

The Theory of Tikhonov Regularization for
Fredholm Equations of the First Kind.
Pitman, Boston, 1984.
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General Regularization

Non-Quadratic Regularization

1

2

∥∥∥Lu − y δ
∥∥∥2

+ αR[u]→ min

Examples:

Total Variation regularization:

TV [u] = sup

{∫
Ω
u∇ · φ dx : φ ∈ C∞0 (Ω;Rm), ‖φ‖L∞ ≤ 1

}
the total variation semi-norm.

`p regularization: R[u] =
∑

i wi |〈u, φi 〉|p , 1 ≤ p ≤ 2

φi is an orthonormal basis of a Hilbert space with inner product 〈·, ·〉,
wi are appropriate weights - we take wi ≡ 1
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General Regularization

Functional Analysis, Basics I

Let (un) be a sequence in a Hilbert space H, then un ⇀H u iff

〈un, φ〉H → 〈u, φ〉H ∀φ ∈ H

The set {
u : u ∈ L1(Ω) and TV [u] <∞

}
with the norm

‖u‖BV := ‖u‖L1(Ω) + TV [u]

is a Banach space and is called Space of Functions of Bounded
Variation

A sequence in BV ∩ L2(Ω) is weak* convergent, un ⇀∗ u, iff

〈un, φ〉L2(Ω) → 〈u, φ〉L2(Ω)quad∀φ ∈ L2(Ω) and TV [un]→ TV [u]

If u ∈ C 1(Ω), then TV [u] =
∫

Ω |∇u| dx

L. Ambrosio, N. Fusco, and D. Pallara
Functions of bounded variation and free
discontinuity problems
Oxford University Press, 2000
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General Regularization

Functional Analysis, Basics II

Let H be a Hilbert space

R : H → R ∪ {+∞} is called proper if R 6=∞
R is weakly lower semi-continuous if for un ⇀H u

R[u] ≤ lim infR[un]

R. T. Rockafellar
Convex Analysis
Princeton University Press, 1970
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General Regularization

Non-Quadratic Regularization

Assumptions:

L is a bounded operator between Hilbert spaces H1 and H2 with
closed and convex domain D(L)

R is weakly lower semi-continuous

Results:

Stability: y δ →H2 y ⇒ uδα ⇀H2 uα and R[uδα]→ R[uα]

Convergence: y δ →H2 y and α = α(δ) such that δ2/α→ 0, then

uδα ⇀H2 u† and R[uδα]→ R[u†]

Asplund property: For quadratic regularization in H-spaces weak
convergence and convergence of the norm gives strong convergence
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General Regularization

Some Convex Analysis: The Subgradient

−1 −0.5 0.5 1

−0.5

0.5

1
f (x) = |x |
p1(x) = 0.5x

p2(x) = −0.25x

Illustration of the function f : (−1, 1)→ R, f (x) = |x |, and the graphs of
two of its subgradients p1, p2 ∈ ∂f (0) = {p ∈ R∗ | p(x) = cx , c ∈ [−1, 1]}
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General Regularization

Some Convex Analysis: The Bregman Distance

0.5 1.5 2.5

1

2

5

6

7

8

y x

f (x)

f (y) + f ′(y)(x − y)
Df (x , y)

f (x) = x2

f (y) + f ′(y)(x − y)

Illustration of the Bregman distance
Df ′(y)(x , y) = f (x)− f (y)− f ′(y)(x − y) for the function f : R→ R,
f (x) = x2, between the points x = 2 and y = 1
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General Regularization

Bregman Distance

1 We consider Bregman distance for functionals

2 If R[u] = 1
2 ‖u − u0‖2 ⇒ ∂R[u†] = u − u†

3 and Dξ(u, v) = 1
2 ‖u − v‖2.

4 In general not a distance measure: It may be non-symmetric and may
vanish for non-equal elements

5 Bregman distance can be a weak measure and difficult to interpret
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General Regularization

Convergence Rates, R convex

Assumptions:

Source Condition: There exists η such that

ξ = F ∗η ∈ ∂R(u†)

α ∼ δ
Result:

Dξ(u
δ
α, u
†) = O(δ) and

∥∥∥Luδα − y
∥∥∥ = O(δ)

M. Burger and S. Osher
Convergence rates of convex variational
regularization
Inverse Problems 20.5. 2004

B. Hofmann, B. Kaltenbacher, C. Pöschl, and
O. Scherzer
A convergence rates result for Tikhonov
regularization in Banach spaces with non-smooth
operators
Inverse Probl. 23.3. 2007
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Sparsity and `1-Regularization

Compressed Sensing
Let φi be an orthonormal basis of a Hilbert space H1. L : H1 → H2

Constrained optimization problem:

R[u] =
∑
i

|〈u, φi 〉| → min such that Lu = y

Goal is to recover sparse solutions:

supp(u) := {i : 〈u, φi 〉 6= 0} is finite

For noisy data: Residual method

R[u]→ min subject to
∥∥∥Lu − y δ

∥∥∥ ≤ τδ
E. J. Candès, J. K. Romberg, and T. Tao
Robust uncertainty principles: exact signal
reconstruction from highly incomplete frequency
information
IEEE Transactions on Information Theory 52.2.
2006
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Sparsity and `1-Regularization

Sparsity Regularization

Unconstrained Optimization∥∥∥Lu − y δ
∥∥∥2

+ αR[u]→ min

General theory for sparsity regularization:

Stability: y δ →H2 y ⇒ uδα ⇀H1 uα and
∥∥uδα∥∥`1 → ‖uα‖`1

Convergence: y δ →H2 y ⇒ uδα ⇀H1 u† and
∥∥uδα∥∥`1 →

∥∥u†∥∥
`1 if

δ2/α→ 0.

If α is chosen according to the discrepancy principle, then Sparsity
Regularization ≡ Compressed Sensing
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Sparsity and `1-Regularization

Convergence Rates: Sparsity Regularization

Assumptions:

Source Condition: There exists η such that

H2 3 ξ = L∗η ∈ ∂R[u†] = ∂

(∑
i

∣∣∣〈u†, φi 〉∣∣∣
)

=
∑
i

sgn(〈u†, φi 〉)︸ ︷︷ ︸
=:ξi

φi

⇒ u† is sparse (means in the domain of ∂R)

α ∼ δ
Result:

Dξ(u
δ
α, u
†) = O(δ) and

∥∥∥Luδα − y
∥∥∥ = O(δ)

M. Grasmair, M. Haltmeier, and O. Scherzer
Necessary and sufficient conditions for linear
convergence of l1-regularization
Comm. Pure Appl. Math. 64.2. 2011

O. Scherzer, M. Grasmair, H. Grossauer,
M. Haltmeier, and F. Lenzen
Variational methods in imaging
Springer, 2009
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Sparsity and `1-Regularization

Analogous Convergence Rates: Compressed Sensing

Assumption: Source condition

ξ = L∗η ∈ ∂R[u†]

Then
Dξ(u∗, u

†) ≤ 2 ‖η‖ δ

for every

u∗ ∈ argmin
{
R[u] :

∥∥∥Lu − y δ
∥∥∥ ≤ δ}

Note: u∗ is the constraint solution

E. J. Candès, J. K. Romberg, and T. Tao
Robust uncertainty principles: exact signal
reconstruction from highly incomplete frequency
information
IEEE Transactions on Information Theory 52.2.
2006

M. Grasmair, M. Haltmeier, and O. Scherzer
The residual method for regularizing ill-posed
problems
Appl. Math. Comput. 218.6. 2011
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Sparsity and `1-Regularization

What can we deduce from the Bregman Distance?

Because we assume (φi )i∈N to be an orthonormal basis, the Bregman
distance simplifies to

Dξ(u, u
†) = R[u]−R[u†]− 〈ξ, u − u†〉

= R[u]− 〈ξ, u〉

=
∑
i

(
|〈u, φi 〉| − 〈ξ, φi 〉︸ ︷︷ ︸

=ξi

〈u, φi 〉︸ ︷︷ ︸
=ui

)

Note, by the definition of the subgradient |〈ξ, φi 〉| ≤ 1
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Sparsity and `1-Regularization

Rates with respect to the norm: On the infinite set!
Recall source condition ξ = L∗η ∈ ∂R[u†]
Define

Γ(η) := {i : |ξi | = 1} (which is finite – solution is sparse)

and the number (take into account that the coefficients of ζ are in `2)

mη := max {|ξi | : i 6∈ Γ(η)} < 1

Then
Dξ(u∗, u

†) =
∑
i

|u∗,i | − ξiu∗,i ≥ (1−mη)
∑

i 6∈Γ(η)

|u∗,i |

Consequently, since ‖·‖`1 ≥ ‖·‖`2 , we get∥∥∥∥∥∥∥πN\Γ(η)(u∗)− πN\Γ(η)(u†)︸ ︷︷ ︸
=0

∥∥∥∥∥∥∥
H1

≤ CDξ(u∗, u
†) ≤ Cδ
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Sparsity and `1-Regularization

Rates with respect to the Norm: On the small Set

Additional Assumption: Restricted injectivity:

The mapping LΓ(η) is injective

Thus on Γ(η) the problem is well–posed on the small set and consequently∥∥∥πΓ(η)(u∗)− πΓ(η)(u†)
∥∥∥
H1

≤ Cδ

Together with previous slide:∥∥∥u∗ − u†
∥∥∥
H1

≤ Cδ

M. Grasmair
Linear convergence rates for Tikhonov
regularization with positively homogeneous
functionals
Inverse Probl. 27.7. June 2011

K. Bredies and D. Lorenz
Linear convergence of iterative soft-thresholding
Journal of Fourier Analysis and Applications
14.5-6. 2008
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Sparsity and `1-Regularization

Restricted Isometry Property (RIP)
Candès, Romberg, and Tao 2006: Key ingredient in proving linear
convergence rates for the finite dimensional `1-residual method:
The s-restricted isometry constant ϑs of L is defined as the smallest
number ϑ ≥ 0 that satisfies

(1− ϑ) ‖u‖2 ≤ ‖Lu‖2 ≤ (1 + ϑ) ‖u‖2

for all s-sparse u ∈ X . The (s, s ′)-restricted orthogonality constant ϑs,s′ of
L is defined as the smallest number ϑ ≥ 0 such that∣∣〈Lu, Lu′〉∣∣ ≤ ϑ ‖u‖ ∥∥u′∥∥
for all s-sparse u and s ′-sparse u′ with supp(u) ∩ supp(u′) = ∅.
The mapping L satisfies the s-restricted isometry property, if
ϑs + ϑs,s + ϑs,2s < 1

E. J. Candès, J. K. Romberg, and T. Tao
Robust uncertainty principles: exact signal
reconstruction from highly incomplete frequency
information
IEEE Transactions on Information Theory 52.2.
2006
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Sparsity and `1-Regularization

Linear Convergence of Candes & Rhomberg & Tao

Assumptions:

1 L satisfies the s-restricted isometry property

2 u† is s-sparse

Result: ∥∥∥u∗ − u†
∥∥∥
H1

≤ csδ

However: These condition imply the source condition and the restricted
injectivity
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Sparsity and `1-Regularization

0 < p < 1: Nonconvex sparsity regularization

∥∥∥Lu − y δ
∥∥∥2

+ α
∑
|〈u, φi 〉|p → min

is stable, convergent, and well–posed in the Hilbert-space norm

Zarzer 2009: O(
√
δ)

Grasmair 2010b: ⇒ O(δ)

C. A. Zarzer
On Tikhonov regularization with non-convex
sparsity constraints
Inverse Problems 25. 2009

M. Grasmair
Non-convex sparse regularisation
J. Math. Anal. Appl. 365.1. 2010
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Sparsity and `1-Regularization

An Application: Wintertechnik AG and Alps

Ground Penetrating Radar: Location of avalanche victims
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Sparsity and `1-Regularization

GPR: L ist the spherical mean operator
Assumption: GPR which focused radar wave

Figure: Simulations with noise free synthetic data: Left: Data. Middle: Reconstruction
by Kirchhoff migration. Right: Reconstruction with sparsity regularization

M. Grasmair, M. Haltmeier, and O. Scherzer
Sparsity in Inverse Geophysical Problems
Handbook of Geomathematics
ed. by W. Freeden, M. Z. Nashed, and T. Sonar
Springer Berlin Heidelberg, 2015
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Sparsity and `1-Regularization

GPR: Simulations with noisy data

Figure: Noisy data. Left: Data. Middle: Reconstruction by Kirchhoff migration. Right:
Reconstruction with sparsity regularization
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Sparsity and `1-Regularization

Reconstruction with real data

Figure: Reconstruction from real data. Left: Data. Middle: Reconstruction by
Kirchhoff migration. Right: Reconstruction with sparsity regularization
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TV-Regularization

TV-Regularization

Let Ω,Σ two two open sets. TV minimization consists in calculating

uδα := argminu∈L2(Ω)

{
1

2

∥∥∥Lu − y δ
∥∥∥2

L2(Σ)
+ αTV [u]

}

L. I. Rudin, S. Osher, and E. Fatemi
Nonlinear total variation based noise removal
algorithms
Physica D. Nonlinear Phenomena 60.1–4. 1992
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TV-Regularization

TV-Regularization

Assumption: L is a bounded operator between L2(Ω) and L2(Σ)

Fact: TV is weakly lower semi-continuous on L2(Ω)

Results:

Stability: y δ →L2(Σ) y ⇒ uδα ⇀L2(Ω) uα and TV [uδα]→ TV [uα]

Convergence: y δ →L2(Σ) y and α = α(δ) such that δ2/α→ 0, then

uδα ⇀L2(Ω) u
† and TV [uδα]→ TV [u†]
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TV-Regularization

TV-Regularization: Source Condition

u† satisfies the source condition if there exist ξ ∈ L2(Ω) and η ∈ L2(Σ)
such that

ξ = L∗η ∈ ∂TV [u†]

Then for α ∼ δ

TV [uδα]− TV [u†]− 〈ξ, uδα − u†〉L2(Ω) = DξTV (uδα, u
†) = O(δ)

M. Burger and S. Osher
Convergence rates of convex variational
regularization
Inverse Problems 20.5. 2004

O. Scherzer, M. Grasmair, H. Grossauer,
M. Haltmeier, and F. Lenzen
Variational methods in imaging
Springer, 2009
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TV-Regularization

Source Condition for the Circular Radon Transform
Notation: Ω := B(0, 1) ⊆ R2 open, ε ∈ (0, 1). We consider the Circular
Radon transform

Scirc [u] := t

∫
S1

u(z + tw)dH1(w)

for functions from

L2(B(0, 1− ε)) :=
{
u ∈ L2(R2) : supp(u) ⊆ B(0, 1− ε)

}

is well-defined

bounded from L2(B(0, 1− ε)) into L2(S1 × (0, 1))

and ‖Scirc‖ ≤ 2π

O. Scherzer, M. Grasmair, H. Grossauer,
M. Haltmeier, and F. Lenzen
Variational methods in imaging
Springer, 2009
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TV-Regularization

Finer Properties of the Circular Radon Transform

There exists a constant Cε > 0, such that

C−1
ε ‖Scircu‖2 ≤ ‖i

∗(u)‖1/2,2 ≤ Cε ‖Scircu‖2 , u ∈ L2(B(0, 1− ε))

where i∗ is the adjoint of the embedding
i : W 1/2,2(B(0, 1))→ L2(B(0, 1))

For every ε ∈ (0, 1) we have

W 1/2,2(B(0, 1− ε)) = R(S∗circ) ∩ L2(B(0, 1− ε))

O. Scherzer, M. Grasmair, H. Grossauer,
M. Haltmeier, and F. Lenzen
Variational methods in imaging
Springer, 2009
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TV-Regularization

Wellposedness of TV-minimization for Scirc

Minimization of the TV-functional with L = Scirc is

well-posed, stable, and convergent

Let ε ∈ (0, 1) and u† the TV -minimizing solution. Moreover, if the
Source Condition

ξ ∈ ∂TV [u†] ∩W 1/2,2(B(0, 1− ε))

is satisfied, then

TV [uδα]− TV [u†]− 〈ξ, uδα − u†〉 = O(δ)
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TV-Regularization

Functions that satisfy the Source Condition

Let ρ ∈ C∞0 (R2) be an adequate mollifier and ρµ the scaled function
of ρ. Moreover, let x0 = (0.2, 0), a = 0.1, and µ = 0.3. Then

u† := 1B(x0,a+µ) ∗ ρµ

satisfies the source condition

Let u† := 1F be the indicator function of a bounded subset of R2

with smooth boundary
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TV-Regularization

Convergence of Level-Sets

Ω ⊂ R2!

1

2

∥∥∥Lu − y δ
∥∥∥2

L2(Σ)
+ αTV [u]→ min

for
u ∈ L2(Ω) ∼=

{
u ∈ L2(R2) : supp(u) ⊂ Ω

}

A. Chambolle, V. Duval, G. Peyré, and C. Poon
Geometric properties of solutions to the total
variation denoising problem
Inverse Problems 33.1. 2017

J. A. Iglesias, G. Mercier, and O. Scherzer
A note on convergence of solutions of total
variation regularized linear inverse problems
Inverse Probl. 35.5. 2018
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TV-Regularization

Convergence of Level-Sets
t-super level-set of uδα:

Uδ
α(t) :=

{
x ∈ Ω : uδα(x) ≥ t

}
for t ≥ 0

Uδ
α(t) :=

{
x ∈ Ω : uδα(x) ≤ t

}
for t < 0

Theorem

Assume that source condition holds! Let δn, αn → 0+ such that
δn
αn
≤
√
π/2. Then, up to a subsequence and for almost all t ∈ R, denoting

Un := Uδn
αn

,

lim
n→∞

|Un(t)∆U†(t)| = 0, and lim
n→∞

∂Un(t) = ∂U†(t).

A. Chambolle, V. Duval, G. Peyré, and C. Poon
Geometric properties of solutions to the total
variation denoising problem
Inverse Problems 33.1. 2017

J. A. Iglesias, G. Mercier, and O. Scherzer
A note on convergence of solutions of total
variation regularized linear inverse problems
Inverse Probl. 35.5. 2018
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TV-Regularization

A Deblurring Result

Figure: Deblurring of a characteristic function by total variation regularization with
Dirichlet boundary conditions. First row: Input image blurred with a known kernel and
with additive noise. Second row: numerical deconvolution results. Third row: some level
lines of the results.
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Regularization of High-Dimensional Data

Image Registration: Model Problems

Given: Images I1, I2 : Ω ⊆ R2 → R
Find u : Ω→ Ω satisfying

L[u] := I2 ◦ u = I1

u should be a diffeomorphism (no twists)
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Regularization of High-Dimensional Data

Calculus of Variations: Notions of Convexity

f : Rm × Rn × Rm×n → R ,
(x , u, v)→ f (x , u, v)

Hierarchy:

f convex ⇒ polyconvex ⇒ quasi-convex ⇒ rank-one convex

Up to quasi-convexity:

u →
∫
Rm

f (x , u,∇u) dx is weakly lower semicontinuous on

H1 := W 1,p(Ω,Rn) with 1 ≤ p ≤ ∞
If m = 1 or n = 1, then all convexity definitions are equivalent
Polyconvex functionals are used in elasticity theory

C. B. Morrey
Multiple Integrals in the Calculus of Variations
Springer Verlag, 1966

B. Dacorogna
Direct Methods in the Calculus of Variations
Springer Verlag, 1989
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Regularization of High-Dimensional Data

Polyconvex Functions
For A ∈ Rm×n and 1 ≤ s ≤ m ∧ n

adjs(A) consists of all s × s minors of A (subdeterminants)

f : Rm×n → R ∪ {+∞} is polyconvex if

f = F ◦ T ,

where F : Rτ(m,n) → R ∪ {+∞} is convex and

T : Rm×n → Rτ(m,n) , A→ (A, adj2(A), . . . , adjτ(m,n)(A))

Typical example:
f (A) = (det[A])2

J. M. Ball
Convexity conditions and existence theorems in
nonlinear elasticity
Archive for Rational Mechanics and Analysis 63.
1977
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Regularization of High-Dimensional Data

Polyconvex Regularization

Assumptions:

R[u] :=
∫

Ω F ◦ T [u](x) dx .

L is a non-linear continous operator between W 1,p(Ω,Rn) and H2

(sometimes needs to be a Banach space) with closed and convex
domain of definition D(L)

Results:

Stability: y δ →H2 y ⇒ uδα ⇀W 1,p uα and R[uδα]→ R[uα]

Convergence: y δ →H2 y and α = α(δ) such that δ2/α→ 0, then

uδα ⇀W 1,p u† and R[uδα]→ R[u†]
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Regularization of High-Dimensional Data

Generalized Bregman Distances

Let W be a family of functionals on H1 = W 1,p(Ω,Rn)

The W-subdifferential of a functional R is defined by

∂WR[u] = {w ∈W : R[v ] ≥ R[u] + w [v ]− w [u] , ∀v ∈ H1}

For w ∈ ∂WR[u] the W -Bregman distance is defined by

DW
w (v , u) = R[v ]−R[u]− w [v ] + w [u]

M. Grasmair
Generalized Bregman distances and convergence
rates for non-convex regularization methods
Inverse Probl. 26.11. Oct. 2010

I. Singer
Abstract convex analysis
John Wiley & Sons Inc., 1997
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Regularization of High-Dimensional Data

Bregman Distances of Polyconvex Integrands
Let p ∈ [1,∞) and H1 = W 1,p(Ω,Rn).

T (∇u) ∈
m∧n∏
s=2

L
p
s (Ω,Rσ(s)) =: S2.

We define

Wpoly := {w : H1 → R : ∃(u∗, v∗) ∈ H∗1 × S∗2 s.t.

w [u] = 〈u∗, u〉H∗1 ,H1 + 〈v∗,T (∇u)〉S∗2 ,S2}

Remark:

Wpoly = (H1 × S2)∗. However, functionals w are non-linear

Wpoly-Bregman distance:

Dpoly
w (u, ū) = R[u]−R(ū)− w [u] + w(ū)

= R[u]−R(ū)− 〈u∗, u − ū〉H∗1 ,H1

− 〈v∗,T (∇u)− T (∇ū)〉S∗2 ,S2
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Regularization of High-Dimensional Data

Polyconvex Subgradient

Ω ⊂ Rm and H1 = W 1,p(Ω,Rn)

For x ∈ Ω, the map (u,A) 7→ F (x , u,A) is convex and differentiable

R[u] =
∫

Ω F (x , u(x),T (∇u(x)))dx

Definition

If R[v̄ ] ∈ R and the function x 7→ F ′u,A(x , v̄(x),T (∇v̄(x))) lies in

Lp
∗
(Ω,Rn)×

m∧n∏
s=1

L
p
s (Ω,Rσ(s)),

then this function is a Wpoly-subgradient of R at v̄
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Regularization of High-Dimensional Data

Rates result
Let H1 = W 1,p(Ω,Rn) and consider regularization by

u →
∥∥∥L[u]− y δ

∥∥∥2
+ αR[u]

Assumptions:

R has a Wpoly-subgradient w at u†

Let α(δ) ∼ δ and ∃β1 ∈ [0, 1), β2 such that in a neighborhood

w [u†]− w [u] ≤ β1D
poly
w (u, u†) + β2 ‖L[u]− y‖

Results:

Dpoly
w (uδα, u

†) = O(δ) and
∥∥∥L[u]− y δ

∥∥∥ = O(δ)

Note, that for polyconvex regularization one requires a stronger condition
than for convex regularization.

C. Kirisits and O. Scherzer
Convergence rates for regularization functionals
with polyconvex integrands
Inverse Probl. 33.8. Aug. 2017

Otmar Scherzer (CSC & RICAM) Regularization of Inverse Problems June 7, 2018 69 / 70



Regularization of High-Dimensional Data

Thank you for your attention
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