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Sampling: “Analog Girl in a Digital World...”

Analog world :
l
| :
. x(t) Sampling
=T |Analog-to-Digital
(ADC)
’ Sampling rate must be at least

* Radar twice the highest frequency
F Image

¥ Ultrasound...

H. Nyquist C. Shannon
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e Judy Gorman 99

Digital world

did

¥ Signal processing
¥ Image denoising
¥ Analysis...

Processing




Limitations of Nyquist-Rate Sampling

¥ Large bandwidth requires high rate samplers
¥ High rate communications
¥ High resolution e.g. in radar and imaging

¢ High sampling rates lead to:

¥ Large and expensive hardware-intensive systems

¥ High-energy systems
¥ Large digital databases that are difficult to process, store and transmit

¥ In medical imaging high rates often translate into long scanning
times or high radiation dosages

ADCs, the front end of all digital devices, remain a major bottleneck

Q.: Can we recover information if we sample at a sub-Nyquist rate?



Super Resolution

All measuring devices are bandwidth or resolution limited

Abbe’s diffraction limit in optical imaging: DL = A
2NA

Spatial resolution is proportional to half the imaging wavelength

Diffraction Limit

Super-resolution Optical microscopy resolution
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Spatial resolution in an antenna array or ultrasound probe is
proportional to the aperture

Can we algorithmically recover the lost information

using principles of sampling theory?




Xampling: Sub-Nyquist Sampling

Xamphng = Compression + Samphng Yonina C. Eldar
Sampling
Theory

¥ Reduce sampling rate in each ADC
¢ Reduce the number of elements used for imaging |
Main idea:

¥ Exploit structure
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» Exploit processing task Distance

Substantial rate reduction and super resolution is possible!




Talk Outline

¥ Motivation for structure
¢ Xampling: Compression + sampling of analog signals

¥ Application to communication, radar and ultrasound

¥ Spatial subsampling

e Super resolution in microscopy and ultrasound

¥ Phase retrieval
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Imaging Modalities

r Imaging in ditferent frequency bands:

Spectral CT, hyperspectral imaging

¢ Radar and ultrasound imaging:

¥ Multiple antennas

¥ Streams of pulses

¥ Beamforming

# Optical imaging: Lack of phase information

General framework for rate reduction and
super resolution image recovery




Multiple Frequency Bands

B Multiband Communication
| | | — /
0 jjj :fl . f2 - J3 I fn Jmax
Unknown carriers _A r
0 fIIlaX

# Can be viewed as fimax—bandlimited

k But sampling at rate > 2f,,,.« 1S @ waste of resources

¥ For wideband applications Nyquist sampling may be infeasible




Streams of Pulses

Unknown times of arrival

Synthetic Aperture Radar

¥ Radar:
= < Velocity m
ay<

»

' 7 iy . > 1
L t1 Lo t3 x

Distance to target
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Ultrasound

¥ Relatively simple, radiation free imaging Ultrasonic probe

Tx pulse

Cardiac sonography Obstetric sonography

Rx signal Unknowns

Tlme
Amphtude - a;
A
> 1

e Echoes result from scattering in the tissue

¢ The image is formed by identifying the
scatterers




Processing Rates

¥ To increase SNR and resolution an antenna array is used

¥ SNR and resolution are improved through beamforming by introducing
appropriate time shifts to the received signals

’ Focusing the received

beam by applying nonlinear
delays

128-256
elements

Scan Plane

&

DL, 0) = ﬁmicom (t —%(t —Jt2—4(8, [o)tsin@ +4(5, /)’ )j

. Requires high sampling rates and large data processing rates

B One image trace requires 128 samplers @ 20M, beamforming to 150
points, a total of 6.3x10° sums/frame




Challenges

¥ Can we reduce analog sampling rates?

¥ Can we perform nonlinear beamforming on the sub-Nyquist samples
without interpolating back to the high Nyquist-rate grid digitally?

Compressed Beamforming

Goal: reduce ultrasound machine size at same resolution

Enable 3D imaging

Increase frame rate
Enable remote wireless ultrasound




Subwavelength Imaging + Phase Retrieval

Collaboration with the groups of Moti Segev and Oren Cohen

¥ Diffraction limit: The resolution of any optical imaging system is
limited by half the wavelength

¥ This results in image smearing

¥ Furthermore, optical devices only measure magnitude, not phase

S e— |aser beam

Nano-holes Sketch of an optical microscope: Blurred image
as seen in the physics of EM waves acts seen in
electronic microscope as an ideal low-pass filter optical microscope




Sparsity Based Subwavelength CDI

; Szameit et al., Nature Materials, 12
¥ Overcome both the lowpass filter and phase loss

EM image Blurred image Sparse recovery
Circles are [ : |
100 nm g H
diameter L,
Wavelength
532 nm

Diffraction-limited
(low frequency)
intensity measurements

Model
Fourier transform

phase
retrieval

Frequency [1A]

recovery measurement




Xampling:

Compression + Sampling
¥ Xampling: practical sub-Nyquist sampling and

Yonina C. Eldar

. Compressed
processing Sampling Sensing
Theory Theoryand Applications
B Many examples n Wthh We reduce Sampllng rate by S heucl i i:"“’;'”‘ Yonina C. Eldarand Gitta Kutyniok

exploiting structure and goal
¥ Low rate translates to lower radiation dosage, faster

scanning, processing wideband signals, smaller
devices and improved resolution

DOAEstlmatlon




DOA Estimation
m ol = - - _’

Xampling: Reduced rate

sampling




Union of Subspaces

Lu and Do 08, Mishali and Eldar 09

u=|]J A A,

AEA A,
z(t) € Ax- — \* is unknown a-priori °

Each A, has low dimension

e Allows to keep low dimension in the problem model
¢ Low dimension translates to low sampling rate

A sampling operator is invertible over a union of subspaces U if and only if
it is invertible for every

Ay~ = A+ A, ={z|z =21 + z2, where 1 € Ay, 22 € A, }.



Xampling:

Compression + Sampling

. . : : : Mishali and Eldar, 10
¥ Prior to analog sampling reduce bandwidth by projecting e —

data onto low dimensional analog space

b Creates aliasing of the data

¥ Sample the data at low rate using standard ADCs in such a
way that in the digital domain we get a CS problem

¥ Results in low rate, low bandwidth, simple hardware and
low computational cost

¥ Achieves the Cramer-Rao bound given a sub-Nyquist
sampling rate (Ben-Haim, Michaeli, and Eldar 12)

¥ Minimizes the worst-case capacity loss for a wide class of
signal models (Chen, Eldar and Goldsmith 13)

Compressed
— PEISGE —— B LWEENGEl —— recovery
processing

Analog preprocessing Low rate (bandwidth)



Xampling Hardware

pi(t) are periodic functions

x(t) :
Pm(t) ¢
J\ nl,
S— H() —/— vl

_j2m
Epi(t) = ame '™ sums of exponentials

B The filter H(f) shapes the tones and reduces bandwidth

E The channels can be collapsed to a single channel

Compressed
— PR NE L —— EESE gt — recovery
processing

Analog iiocssing Low rate (bandwidth)




Compressed Sensing

Candes, Romberg, Tau 06, Donoho 06
X

Compressed
Sensing

Theory and Applications

<

Yonina C. Eldar and Gitta Kutyniok
M
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.
Short m<n
~ 2K meas. Long
Main ideas: K-sparse

_ _ (K nonzeros)
B Sparse input vector with unknown support

B Sensing by sufficiently incoherent matrix (semi-random)
B Polynomial-time recovery algorithms from K logn measurements

F Modern optimization methods come into play




Compressed Sensing Extensions

. ~
2 . “ !{ ,/%T\I -
r Nonlinear sparse recovery (optics): 2
¥ Phase retrieval
b @0 D
(Shechtman et. al 11, 14, 15, Eldar and Mendelson 12, Ohlsson et. al 12) R Y

¥ Nonlinear compressed sensing

(Beck and Eldar 12, Bahman et. al 11)

b Reference based sparse recovery (MRI)

(Weizman, Eldar and Ben Bashat 16)

¥ Sparsity with tracking (ultrasound) (sotomon et. a1 1) Nl

_ StatiStical Sp arSity (Solomon et. al 18, Cohen and Eldar 17,18)

e Deep learning from compressed samples




Analog Source Coding

Kipnis, Goldsmith and Eldar 17

X(t) ——»{ h(t) =, ENC |—] DEC |—» %(t)

Sampler inf, D(f,,R)=infx(t)- 2O

¥ For a continuous signal x(t) and bit rate R what is the minimum
possible distortion ?
¥ What is the minimum sampling rate that achieves this distortion?

jfl_og‘l-;m{;v” Analog source coding theorem

— R .
R(fs,g)zaj%log [wa(f)/é’}df

fs -
D(f,,0) = mmseX|Y(fs)+j2fsmin{s (f), O¥df
2

XY




Optimal Sampling Rate

Shannon [1948]:

“we are not interested in exact transmission when we have a continuous
source, but only in transmission to within a given tolerance”

¥ Can we achieve D(R) by sampling below fy.?

» Yes! For any non-flat PSD of the input | for vs R
D(R, f.) = D(R) for —‘ ‘
fS - fDR(R)I é; 1




Part 3:
Applications to Comm,
Radar and Ultrasound

“In theory, theory and practice are the same.
In practice, they are not.”
Albert Einstein




The Modulated Wideband Converter
A
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Spectral CT — with Pseudo-Polar Transform

E
B Separate materials based on spectral properties ? N
¥ Transforming the spectral scan with RAPToR to the z \
pseudo-polar grid W

b Better algebraic stability z 0 o0 o = 00 120

¥ Lower computational complexity 9
B New iterative algorithm for spectral decomposition
E Results out perform state-of-the-art in image quality

Original Phantom Reconstroction SNR = 048 —

Tube 120 keV
Voltage
# Energy 3
Bins
Basis Todine,
Materials Calcium,
Soft Tissue

SNR 40 dB




SPURS: 5 ’arse | 'niform

Kiperwas, Rosenfeld and Eldar 16

¢ When sampling non-uniformly one needs to interpolate to a uniform
grid to apply FFT

¥ Particularly true when undersampling using non-Cartesian grids

k-space k-space Image domain
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samples samples image
¥ Conventional resampling is computationally demanding (NUFFT)
(Fessler and Sutton 03)
e SPURS: Solution based on modern sampling methods and signal priors

e Efficient implementation using sparse system solvers and filtering



Conventional Beamforming

Non-linear scaling of the received signals Beamformed Signal b (t)
| |

M
1 1
®(t;8) = i Z Oy (E (t - Jtz — 4y, tsing + 4}%))

m=1

Vm- distance from m’th element to origin, normalized by c. S

0

Performed digitally after sampling at sufficiently high rate

Individual traces @, (t)

- S—— S = =
: . i ;

High rate ADC
(~20-50MHz / mmEg DBeamforming B
element)

m Focusing along a certain axis — reflections originating from off-axis are

attenuated (destructive interference pattern)
m SNR is improved



Compressed Beamforming

Each individual trace is buried in noise and has no structure

Structure exists only after beamforming

¢ How can we perform beamforming on low rate data? How can we obtain
small time shifts without interpolation?

Compressed beamforming: Enables beamforming from low rate samples

Key idea: Perform beamforming in frequency

= _Zzgom[n]Qk m; 0[k n]

m=1 n N
Fourier coefficient Fourier coefficient of 1ol
of BMF signal signal at element m 20}
Logig: th fficients. of gy m (6 |
1. BIQ/I‘F"S?éI’JEﬁIES NS LEESTS }e)u A8 OL gpypiti ©) |
50+

recovered from a sma

e fC 20 s -60|f
2. Sepalt; ﬁl)lmbﬁrc ofron (ﬁE‘-\* i f?c fn }““mber o
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Sub-Nyquist Ultrasound Imaging

Chernyakova and Eldar 13-16
Standard Imaging ~1/32 of the Nyquist rate

0
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4% Nyquist rate at every channel!
Low rate sampling enables:

¥ 3D imaging \/7 & S L/ 1))

e High frame rate for cardiac imaging S

# Handheld wireless devices for rural medicine, (
emergency imaging in the field/ambulance



Bring the Digital Revolution to

Ultrasound, Anywhere

Xampling technology samples and processes ultrasound
signals without loss of information at very low rates !
¢ Allows to integrate electronics into probe: wireless ultrasound

¥ Enabling an “open imager” — advanced signal processing and ML
methods that can run on any platform
¥ Enabling remote health flexibility

e Super resolution methods Advanced cloud
based
Low bandwidth T~ Signal processing
RAW data

m— N

L\ \J s y, j
1= :
Low rate '
et Low rate

sampling HW e ® processing
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Defense Applications

Small, cheap radars with excellent resolution
We can also reduce physical parameters:

¥ Create a radar map in less time
¥ Use fewer antenna elements

Spectrum sharing between radar and communication over
the same channel

Free congested spectrum

Fast frequency detection

e E#-ii‘-ld
STATES EIE =
J
NITIVEIR A EAE '\f{fﬁl\'ﬁf\i 2 Basilials Hui']' HM‘ sl

_Jlll‘ = L"".l.ld{llll ‘i-




Sub-Nyquist and Cognitive Radar




Part 4:
Spatial subsampling

DAS - 63 Elements Cantor - 16 Elements

Axial Distance [mm]




Spatial CS in MIMO Radar

Rossi, Haimovich and Eldar, 13

We can randomly dilute the number of elements in a MIMO radar
using sub-Nyquist and CS ideas

Using spatial Nyquist sampling the array aperture scales linearly with
MN - the number of transmit and receive antennas

Using CS we can get Nyquist resolution with MN scaling
logarithmically with aperture

A Target k ALY

ooofocoo@ oo0oo0o0o0000@O0O0OO0OO0

/
6,/ Plane
NII wave
/
— d oo 0o o —o—o >

Tx/Rx sensors




Hardware Prototype

Mode 1 [@®YYYYYYY

Mode 2 ¥ 3YYY

Mode 3 oYY

Mode 4 Yoo O
20x20 ULA

Y Tx oRx

YY Y ¥Y¥

o ooY

YYYYYYYYYYYYYYYYYY

Mishra et al., CoSeRa 2016

Combined
temporal and
spatial sampling
is 12.5% of the
Nyquist rate,
same resolution

2

3 4 5
Aperture (m)

Prototype Modes

Parameters Mode 1 Mode 2 Mode 3 Mode 4
#Tx, #Rx 8.10 8.10 4.5 8,10
Element placement Uniform | Random | Random | Random
Equivalent aperture 8x10 8x10 8x10 20x20
Angular resolution (sine of DoA) 0.025 0.025 0.025 0.005
Range resolution 1.25 m

Signal bandwidth per Tx

12 MHz (15 MHz including guard-bands)

Pulse width 4.2 us

Carrier frequency 10 GHz
Unambiguous range 15 km
Unambiguous DoA 180° (from -90° to 907)
PRI 100 ps

Pulses per CPI 10

Unambiguous Doppler

from =75 m/s to 75 m/s

Technical Specifications




Antenna Selection via Deep Learning

¥ Standard approach is to choose elements at random Elbir, Mishra and Eldar, 2018
¢ Can we do better?

Deep learning:

Rey = o
D)
<
Conviayer  Pooling Conulayer  Pooling Conviayer  Fully Fully
At ¥ Ix2kemnel  2x2kemel  2x2kemel 2x2kemel  2x2kemel Connected  Connected

Our Deep Learning Strategy

¥ For known target locations can choose arrays that
minimize the Cramer-Rao (or other) bound

»  Training data: for a set of known target locations
create R and pair with optimal subarrays

V vV VvV VY ¥ Train CNN: to minimize misclassification of
determining optimal array

Antenna Array Selection Switch £33 ¥ Cognitive performance: For every covariance

input, redesign optimal array using trained CNN

40



Antenna Selection for Imaging

. . . . . Cohen and Eldar, 2018
¥ FPor imaging (radar, ultrasound) there isn’t a single metric

¥ Image quality is determined by the beampattern m(¢9) which represents

the directivity of the beamformer and is given by

H(f) =3 e 2mi®5nd

n

g - direction

H(0)|

resolution
contrast

\
A - wavelength of input field

0
O|deg]

e Can we create the same beampattern with less elements?
:

Factorization — create beampattern by a convolution of two functions

B In active sensing: convolve transmit and receive apertures
e In passive sensing: convolve receive aperture with itself

Convolutional Beamforming



Convolutional Beamforming (COBA)

¥ Output of a standard delay and sum beamformer:

N
b= Z zn Where z,, are the array signals after delays

n=—N
¥ Convolutional beamformer (COBA):
¥ Compute y, = sign(z,)v/ |z

g Convolve S=Yy *xy
¥ Sum b=>S2N L\ sn

—DAS
—— COBA||

.  The resulting beam pattern is

|H(B)]

2N |
51n}\(9) .

H(0) = Z (2N — |n|)e ™
n=—2N o2k




Product Arrays

Beampattern of COBA can be written by the convolution theorem as

N N N N
27§ sin(@)nd —27j sin(6) nd —QWJM(H—FI’H)O!
H(0) = E e A E e A = Z Z e A

n=—N n=—N n=—N m=—N

Applying COBA is equivalent to a delay-and-sum on the sum co-array
S={n: n=i+j i,j€Il}

[ —location set of the array

Performance determined by the virtual co-array!

The same sum co-array can be obtained from a sparse physical array
where the number of elements is 2V N — 3.

Thus, the reduction factor is (2N — 1)/(2V' N — 3) ~ V' N!

O O OO0 O0O00O0OO0 O O
~(N —VN) -1 0 1 N-VN



In-Vivo Results

DAS - 63 Elements Cantor - 16 Elements

S S
E E
O] o
O O
c c
3 3
L n
0 O
I I
= X
< <

Lateral Distance [(mm] Lateral Distance [mm]




Part 5:
Super-resolution in

microscopy and US




Super Resolution Microscopy

Solomon et. al 18
¥ Spatial resolution is proportional to half the imaging wavelength [

¥ Noble prize 2014: super resolution using optical fluorescence

microscopy (Betzig, Hell, Moerner)

¥ New measurement process — control fluorescence of individual molecules

¥ Image the same area multiple times — only a few point-emitters each time
o)

¥ Superimpose the images

¥ Spatial resolution of ~20nm

Eric Betzig Stefan W. Hell William E. Moerner

® Limited temporal resolution!

> 10000 frames to collect all molecules

Can we get both high temporal resolution and high spatial
resolution?




Correlation-Based Analysis

r For brightness images it is sufficient to estimate
the variance of each pixel
v Power spectrum recovery can be performed at

much lower rates than signal recovery!
r Translates into fewer images increasing temporal resolution

What is the minimal sampling rate to estimate the signal

covariance?

e Assumption: Wide-sense stationary ergodic signal

¢ For covariance estimation we can substantially reduce the
sampling rate even without structure!



Covariance Estimation

. . : : Cohen, Eldar and Leus 17
¥ Letx(t) be a wide-sense stationary ergodic signal

» We sample x(t) with a stable sampling set at times R = {t;}iez
¥ We want to estimate 7, (7) = E[x(t)x(t — 7)]

What is the minimal sampling rate to recover 7, (7)?

¥ Sub-Nyquist sampling is possible!
Intuition:
¢ The covariance 7, (7) is a function of the time lags t = t; — ¢;

e Torecover 1, (1), we are interested in

the difference set R: t, —t;
i3 — 1t
. t, ty — 1
t, —t
1 t, —t, 4 12
) t, —t .
i ts—ty & . 3/ Difference set
Sampling set ¢ > 3/ R={tj—tj}ijez

R = {t} 5 ls — ty t: > t:
LJIEZ l J



SPARCOM: sity-Based Super

Resolution ¢ (rrelation Vicroscopy

Solomon, Mutzafi, Segev, Eldar 18

¥ Take a small number of images with high density of fluorophores

¥ Compute correlations among images

¥ Fluorophores in different pixels are independent

¥ Recover image by estimating the pixel’s variances on a high resolution grid

“Relax” the condition for a single emitter per diffraction limited spot

\
[ N
Mathematically: | \\ [\,
¥ Acquired signal: I(r,t)=2k=1u(r—rk)sk(t) S S — - S—
O m 0 0O 0 O
# In correlation space R, = AR A" + N PO
0 0 0 O m 0
0O 0 O 0 0

e Recovery based on Reweighted LASSO minimization

2

N2
inA||W . R i
ity Wrdly +S)|Ri— ) aar' 7
=1

F



uper lesolution
rrelation Vicroscopy

Data taken from: http://bigwww.epfl.ch/smlm/datasets/index.html

Diffraction limited Ground truth STORM 12000 F SPARCOM 361 F

/ y - /
NS g r /
) J| s { f
Ay _J { I
] / f 2 |
o 1 I |

Similar resolutidﬁ to low dens. STORM — two orders
of magnitude faster

Diffraction limited STORM 500 F SPARCOM 500 F SPARCOM 50 F

53



Super-resolution of T-cell Receptors

r  Immune response of T-cells involves T-cell receptor (TCRs) molecules
r  TCRs are clustered inside the Leukocyte microvilli

¢ STORM experiment with 30000 exposures
¢  SPARCOM performs reliable recovery with

100 times shorter acquisition period

lum

¢ Reconstruction of TCRs only at the focal plane!

¢ May lead to live cell inspection of TCR arrangement
SPARCOM (green) STORM (red) Membrane topology

AN




Super Resolution Contrast

Enhanced Ultrasound

Bar Zion et. al 18

¥ Bolus injection of microbubbles into the blood stream
¥ Acquisition of consecutive frames to produce sub-wavelength image
¥ Micro-bubbles act as point emitters in the bloodstream

,i

Temporal Mean

Depth [mm]

— Frame 2

Frame 1

10 15 b 25 11 35 40
Width [mm]



parsity-Based | 'ltrasound Super-
resolution ' 'emodynamic 'maging

Temporal mean

—+—Temporal mean
—o—SUSHI
—b—Super localization

Normalized Intensity [a.u.]

0.1 X[mm] 1.3 0.1 X[mm]

Super-resolution imaging using CEUS in real-time

» Application: relapse detection & treatment monitoring in \qg
Crohn’s disease o\ Lo

EClinical evaluations with Dr. Anat Ilivitzki at Rambam RAMBAM




Method: £

Exploiting Flow Dynamics

Contrast agents flow is structured: within blood vessels Solomon et. al 18

Exploit flow to improve sparse recovery

Combine sparse recovery with on-line tracking
Use current locations as weights in sparse recovery "
Tracking by optical flow and Kalman filtering A X
Yields estimate of contrast agents velocities N o

Diffraction Frame-by-frame Sparse recovery
limited sparse recovery by exploiting flow Velocities estimate

[mm/sec]




Super-resolution via Deep Learning

r Resolve overlapping UCAs via deep network scheme
r Comparable performance to sparse recovery methods
v Faster execution time

r Relies on the popular U-net architecture

¢  Cost function:

|If (x16) = G = y1|3 + Al f (xIO)]14

A A

A
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
Parameters

Network |

Super%resolved
frame

Small convolution kernel




Phase Retrieval:

Recover a signal from its Fourier magnitude

Collaboration with Profs. Moti Segev and Oren Cohen, Technion

Fourier + . 2
zln] — Absolute value | ylk] = [X[k]]

Arises in many fields: crystallography (atterson 35),
astronomy (rienup 82, Optical imaging itane 90, and more

Given an optical image illuminated by coherent light, in the far field we
obtain the image’s Fourier transform -
Optical devices measure the photon flux,
which is proportional to the magnitude

Phase retrieval can allow direct image recovery [ .

(S0 i Phase Retrieval

Using ideas of structure and optimization we
can enable phase recovery




Reviews

Recent overview:

Y. Shechtman, Y. C. Eldar, O. Cohen,

H. N. Chapman, J. Miao, and M. Segev,
“Phase retrieval with application to optical imaging,” .
: PP P SIS Phase Retrieval
SP magazine 2015 . T
with Application
to Optical Imaging
Book chapters:

K. Jaganathan, Y. C. Eldar, and B. Hassibij,
“Phase Retrieval: An Overview of Recent Developments,”
In Optical Compressive Imaging edited by A. Stern

T. Bendory, R. Beinert and Y. C. Eldar, "Fourier Phase Retrieval: Uniqueness and
Algorithms", In Compressed Sensing and its Applications: MATHEON Workshop



Conclusions

¥ Sub-Nyquist sampling of many classes of signals
¥ Reduce scanning time and increase resolution by exploiting structure
¥ Structure also aids in robust interpolation

¥ Super resolution in microscopy and ultrasound using

structure in the correlation domain

Portable ultrasound based on sub-Nyquist techniques

In the context of optics allows recovery of sub-wavelength ]

info from optical far field and recovery from loss of phase

Can substantially reduce scanning times, device size,
and increase imaging performance by carefully

exploiting structure in analog and digital domains!




Future Vision

Exploit structure and goal

Mathematical limits:
Sampling rates
Coding rates
Superresolution limits

Engineering research:
Development of new samplers
Technological applications
that break existing barriers

Scientific breakthroughs:
Thanks to the possibility of
seeing what we could
not see before ...




Xampling Website

webee.technion.ac.il/people/YoninaEldar/xampling top.html

Y. C. Eldar, “Sampling Theory: Beyond Bandlimited Systems", Cambridge i H i

University Press, 2015 sampling
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ic probe _
jng, \n vhich the U“[ason P
.ound imaging, » |
! \‘\\”"““\‘, , stream of hort ‘. numgp “
I e Lk GE Healthcares “

{ in the figure

as current

0 samples

in such

~ruction

The reconstructt
qing systems t

lﬁxagwr‘g sYyS g

potential of our sche

pote

sampling rate

in reducing

zing the

;,,;;x‘ g of analog inputs at rates f
Paces. This .
Peces. This website Provides

IES of engineer ng a o

ar below the

onef

Nyquist rate
Introduction to union

Pplicationg
Compressed
Sensing

Theoryand Applications

Yonina C. Eldar and Gitta Kutyniok



http://webee.technion.ac.il/people/YoninaEldar/xampling_top.html
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continuous-time and discrete-time signals. Traditional systems treat the
sampling and processing stages separately and require sampling at the
well-known Nyquist rate. In contrast, SAMPL research focuses on new
*asign paradigms in which sampling and processing are designed jointly
1 order to exploit signal properties already in the sampling stage. This
approach has the potential to drastically reduce the sampling and
processing rates well below the Nyquist rate, typically considered as the
ultimate limit for analog to digital conversion. The proposed prototypes
can reduce power consumption, hardware size and complexity, and
enable efficient wideband sensing.
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The laboratory facilitates the transition from pure theoretical research to = 2

: ; S § more project proposals y more pictures
the development, design and implementation of prototype systems.
SAMPL Lab integrates these new ideas directly into technology by close
collaboration with leading industrial companies. Systems developed in the b Demos
lab demonstrate the research results and technology advances in a wide
range of applications ranging from bicimaging such as 3D ultrasound and
MRI through communications, laser optics, cognitive radioc and radar
systems.

Y more info

Contact Us: SAMPL Lab Team y more demo movies
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If you want to go fast go alone
If you want to go far bring others
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If you found this interesting ...
Looking for graduate students and post-docs!




