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Mathematics & (Computer) Vision

DaVid Mumford Brown and Harvard Universities

Optimal Approximations by Piecewise Smooth

‘What is “vision"? Functions and Associated Variational Problems’
DAVID MUMFORD
. Harvard University
‘What are the key mathematical tools
appropriate for modeling the brain and AND 1989
cognitive skills? JAYANT SHAH

Northeastern University

Unwinding all these intertwined factors
in order to infer the nature of worlfi around occlusion & scale-invariant models
you has proved to be very challenging and,

g P N : nonlinear patch statistics
as of this writing, is only partially solved. : o " ) ion & curvature flows

2D shape & conformal mapping
stochastic grammar of images

image partitioning

Grenander’s pattern theory (Appl. Math. Brown University)
Geman, Bienenstock, Srivastava, Zhu, ...

Image Data Science
Computer Vision

40 years (brief review): 4 approaches (‘paradigms’)

framework containing the basic assumptions, ways of
thinking, and methodology that are commonly accepted by
members of the scientific community

dogma A

prescribed doctrine proclaimed as unquestionably true
by the scientific community

Approach 1

“Reformulate CV as an inverse problem!”

Early Vision: From Computational Structure to
Algorithms and Parallel Hardware

Tomaso PoGgGio
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common cl)mputational structure of many early vision problems is that they are mathemati-
cally ill-posed in the sense of Hadamard. Standard regularization analysis can be used to solve

Approach 1

“Reformulate CV as an inverse problem!”

inverse optics approach: progress has remained elusive!

... unwinding all these
intertwined factors ...




Approach 2
“Active Vision Systems make CV well-posed”

Figure 7. The KTH Head-Eye system was used for performing the
experiments. The head-eye system consists of two cameras mounted
on a neck and has a total of 13 degrees of freedom. It allows for
computer-controlled positioning, zoom and focus of both the cameras
independently of each other.

Approach 2
“Active Vision Systems make CV well-posed”

computational
projective geometry
(2 textbooks)
feedback & control
at all levels

Approach 3
“Bayesian Approach (Graph. Models, MRFs, CRFs)”

D. Mumford (pers. homepage):

Below, a photo of my inspiration, Ulf Grenander, at
his summer house in Sweden. He was the first to
understand that Bayesian inference and graphical
models were the best mathematical tools with which
to model virtually all cognitive processes.

PPl Stochastic Relaxation, Gibbs Distributions, and the ... - Semantic Sch...
https://pdfs.se! i ar,org/62c3/4c8a8d8b82a9c466c35cda5e4837¢17d9cch.pdf ¥

by S GEMAN -(Cited by 21625) Related articles

Oct 7, 1983 - STUART GEMAN AND DONALD GEMAN. Abstract-We make an analogy between
images and statistical me- chanics systems. Pixel gray levels ...

Approach 3
“Bayesian Approach (Graph. Models, MRFs, CRFs)”
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Approach 3
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“Bayesian Approach (Graph. Models, MRFs, CRFs)”

Approach 4

“Train a Deep Network !”

unprecedented performance in many application areas

strong impact on large-scale optimisation (SGD, etc.)

SIAM ReVIEW

© @ Society for Industrial and Applied Mathematics
Vol. 60, No. 2, pp. 223-311

Optimization Methods for
Large-Scale Machine Learning*

: i
+ function: ~1000 image categories Fral;fg %:tr::i
* parameters: ~60.000.000 Jorge Nocedal®
» training data: millions of labeled images

Approach 4

“Train a Deep Network !”

“... understanding the reasons for this success has remained elusive.”

“... the assumptions encoded in such models are for the most part
a mystery.”

(=) SIAM-IS’18: MS50, MS70)

arXiv: 2017 Failures of Gradient-Based Deep Learning

Shai Shalev-Shwartz', Ohad Shamir?, and Shaked Shammah!

!School of Computer Science and Engineering, The Hebrew University
2Weizmann Institute of Science

training phase: adaptivity, feedback
test phase: black box
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Outline Approach
|

Guiding Principle

PDEs supervised labeling smooth dynamical system
Variational assignment flow
: JMIV17
| W/ (1) = V(W; D, G)
Action & unsupervised labeling label evolution
Perception coupled assignment flow
(W (1), G(t)) = V(W,G) submitted|

) regularised labeling
Graphical  controlled assignment flow

Model .
s W(t) =vW,U;D,G) B
s

v

learning by control

Scope: Interplay of 2 levels

= fespepe=t=t=t=s
label space : WS%%% =
(sign. statistics) =" S—1— == patch
feature space
(high dim.)
pixel

Supervised Labeling (Segmentation, Partitioning)

D; = (d(fi, a)s---,d(fi, gm)) metric, distance vector (data term)

Wi = (Pr(g1lfi), -, Pr(gmlfi)
Im

labels \
feature f' ! (prototypes)
vector Jt| @

92 regularisation ?

features
metric space

Supervised Labeling (Segmentation, Partitioning)

Di = (d(fi,91),---d(fi, gm))

Im

labels

feature f i (prototypes)
vector JU|

metric, distance vector (data term)

VXY, Z € X(W):

Zgrr(X,Y) = grr(VzX,Y) 4+ grr(X,VXY)

features
metric space




Supervised Labeling (Segmentation, Partitioning)

D; = (d(f,-, a1)s---,d(fi, gm)) metric, distance vector (data term)

1
g:m i/i(Wi) = expyy, ( - ;Hwi (Di)) -

label _ -1
feature fz (pro?oti/;es) Si(W) = expy, ( ;wi XPyy, (Li(VVZ)))
: j

vector

features
metric space

Supervised Labeling (Segmentation, Partitioning)

Di = (d(fi7 91)s---,d(fi, gm)) metric, distance vector (data term)

Si(W) = expy, (
Im IE

abols g
: (prototypes) : M/’L =

........................................

feature
vector f ?

.......................................................

features
metric space

Supervised Labeling (Segmentation, Partitioning)

Supervised Labeling (Segmentation, Partitioning)




Supervised Labeling (Segmentation, Partitioning)

Supervised Labeling (Segmentation, Partitioning)

Supervised Labeling (Segmentation, Partitioning)

Supervised Labeling (Segmentation, Partitioning)




Supervised Labeling (Segmentation, Partitioning)
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Supervised Labeling: Inference with Graphical Models

E(x) = Ei(zi) + Y Eyjlziz;) | x;€{g1,.-. 9m}

icy ije€
l \ optimal transport
Ep(W) =" Ei(W:) + Y dija(Wi, W)
Y ije€

_ 8E©(W) smooth approximation
vonve) (D

— =R

Supervised Labeling: Inference with Graphical Models EIVEH

“frustrated cycle experiment”

a T Success rate  Iterations
022 0.2 97.35% 45
0.5 033 93.41% 15
0.58 0.15 88.6% 9
SIAM J. CONTROL AND OPTIMIZATION (© 1986 Society for Industrial and Applied Mathematics
Vol. 24, No. 5, September 1986 008

DIFFUSIONS FOR GLOBAL OPTIMIZATION*
STUART GEMAN+t AND CHII-RUEY HWANG#

dx,=-VU(x,) dt++2T dw,

Outline

Approach Guiding Principle

supervised labeling smooth dynamical system
assignment flow
W(t) =V(W;D,G)
unsupervised labeling label evolution
coupled assignment flow

(W(t),G(t) = V(W,G)

regularised labeling learning by control

controlled assignment flow

W(t) = V(W,U; D, G)




Unsupervised Labeling (Segmentation, Partitioning)
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Subbarao & Meer (IJCV’09):

Unsupervised Labeling: Plug In and Play
SO(3)-valued data

Unsupervised Labeling: Plug In and Play

Euclidean color space supervised: 200 labels

unsupervised: few labels —

Unsupervised Labeling: Plug In and Play

positive-def. manifold (dim = 120)  supervised: 200 labels

Py F = / — ) [(f — &) @ (f — Elf)](v) dy




Unsupervised Labeling: Plug In and Play b gl VI1S31-1

supervised: 200 labels

few labels few labels

Outline

Approach Guiding Principle

supervised labeling smooth dynamical system
assignment flow
: JMIV'17
W(t) = V(W: D.G)
unsupervised labeling label evolution
coupled assignment flow

(W(t),G(t) = V(W, G)

regularised labeling learning by control

controlled assignment flow

W(t) = V(W,U; D,G)

Feedback & Control - 1
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assigned label /
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Pg; prescribed label statistics

Dk, (Pé, PQ(t))
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Feedback & Control - 1

Feedback & Control - 1
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Feedback & Control - 2 data
1
Li(W;) = expyy, ( — ;HWI(D1)>

decoupled single pixel flow

Wi(t) = L, ) (Li(VVi(t))>

short-time single pixel flow
Wi(t) = expy,, (Vi(t)), Wo,i = Wil(to)
Vi(t) = My, ,; (s + Sexpﬁ}w (W,(t)))7 Vi(to) =0
closed-form single pixel flow ( ¢y + 0)

t
Vi) = [ ey, (s)dr
0

Feedback & Control - 2

full single pixel flow linearised flow

piecewise linear flow




Feedback & Control - 2
short-time full pixel flow

W (1) = expy, (V(1))
V(1) = T, (5 + Sexpyl (W) + U (LW (0 D) )
—

decoupled T
non-local coupling

On the mathematics of emergence*

Felipe Cucker - Steve Smale**
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x(t+h) =x(t)+hv(t)
H
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